

SOIL MANAGEMENT PLAN HEALTHY LIVING CAMPUS 514 NORTH PROSPECT AVENUE REDONDO BEACH, CALIFORNIA SMA CA#A160

Prepared for BEACH CITIES HEALTH DISTRICT

1200 DEL AMO STREET

REDONDO BEACH, CA 90277

Prepared by LEIGHTON CONSULTING, INC.

17781 COWAN

IRVINE, CALIFORNIA 92614

Project Number: 13541.001

June 27, 2022

SOIL MANAGEMENT PLAN

HEALTHY LIVING CAMPUS 514 NORTH PROSPECT AVENUE REDONDO BEACH, CALIFORNIA SMA CA#A160

This Soil Management Plan for the proposed Healthy Living Campus located at 514 North Prospect Avenue in Redondo Beach, California was prepared by Leighton Consulting, Inc. for the Beach Cities Health District in a manner consistent with the level of care and skill ordinarily exercised by professional geologists and environmental scientists. This Report was prepared under the technical direction of the undersigned, who is a California Professional Civil Engineer.

LEIGHTON CONSULTING, INC.

Matt S. Himmelstein, PE C57066

Principal Engineer June 27, 2021

TABLE OF CONTENTS

Secti	<u>on</u>	<u>Ра</u>	<u>ige</u>			
1.0	INTRODUCTION AND OBJECTIVES1					
	1.1 1.2 1.3 1.4 1.5	UST History Oil Well History Adjacent Properties Previous Sampling Activities Soil Vapor Results	1 2 2			
2.0	ACTI	VITIES DURING DEMOLITION ACTIVITIES	6			
	2.1 2.2	Activities During UST RemovalActivities During Pavement and Slab Removal				
3.0	REMI	EDIAL ACTION GOALS FOR SOIL	7			
4.0	RESF	PONSE TO PREVIOUSLY UNIDENTIFIED ENVIRONMENTAL LIABILITI				
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Site Specific Health and Safety	8 9 9 10 10			
		4.7.1 SCAQMD Rule 1166				
	4.8 4.9 4.10	Contaminant Reduction Zone Areas Engineering Controls for Stockpiled Soil Dust Control	12			
5.0	SOIL	PROFILING AND DISPOSAL ACTIVITIES	13			
6.0	SITE	RESTORATION ACTIVITIES	14			
	6.1 6.2	Shallow Excavations Up to Four Feet				
7.0		CLUSIONS AND RECOMMENDATIONS				
8.0	REFE	ERENCES	16			
ATTA	CHME	<u>NTS</u>				

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – Planned Site Layout

Appendix A - Converse Consultants Phase II ESA

1.0 INTRODUCTION AND OBJECTIVES

Leighton Consulting, Inc. (Leighton) is pleased to present this Soil Management Plan (SMP) detailing the proposed actions to be undertaken at the proposed Health Living Campus development located at 514 North Prospect Avenue in the city of Redondo Beach, California (Site, Figure 1).

The Site is located on the north side of the intersection of Prospect Avenue and Diamond Street and consists of two parcels covering a total of approximately 10.38-acres. The Los Angeles County Assessor's Parcel Numbers for the Site are 7502-017-902 and 7502-017-903. The Site is currently developed with four buildings and two parking garages, with additional parking lots and landscaping. A permitted 10,000-gallon diesel fuel underground storage tank (UST) is located on the property, as is an abandoned oil well (Figure 2). The planned site layout after redevelopment is shown on Figure 3.

One Phase I and one Phase II environmental site assessments (ESAs) were conducted for the Site in 2019 and 2020. A listing of these past environmental investigations of the Site is presented below:

- 1. Converse Consultants (Converse), Phase I Environmental Site Assessment Report, 514 North Prospect Avenue, Redondo Beach, California May 15, 2019.
- 2. Converse, Phase II Environmental Site Assessment Report, 510, 512, 514 and 520 North Prospect Avenue, Redondo Beach, California February 26, 2020.

A copy of the Phase II ESA is included as Appendix A.

1.1 <u>UST History</u>

During UST replacement activities in 2008, the UST being replaced was discovered to have released petroleum hydrocarbons to the subsurface. The Site was listed on a Leaking Underground Storage Tank database (LUST). The case was issued a no further action (NFA) designation from the California State Water Resources Control Board (SWRCB) on July 14, 2015.

1.2 <u>Oil Well History</u>

A previously abandoned oil well (Simmons #2) has been identified in the northern area of the Site, approximately 150 feet south of the center line of Beryl Avenue (Figure 2). Based on a review of documents publically available from the California Geologic Energy Management Division (CalGEM), the oil well was abandoned in

1989. In 1990, the California Department of Conservation, Division of Oil and Gas (DOG), now CalGEM, reviewed the abandonment record and determined that all the requirements for abandonment were been fulfilled.

Based on the current redevelopment plan, the existing oil well cap will be disturbed. BCHD is working with CalGEM to secure the rights to the well in order to recap the well in order to facilitate redevelopment. Oil well drilling, abandoning, and capping activities will be permitted and contracted separately prior to site demolition and redevelopment.

1.3 Adjacent Properties

A former dry cleaner site is listed in the adjacent shopping center to the northwest at 1232 Beryl Street. Coury & Son Cleaners was listed in various databases in the Converse Phase I report for the various violations related to failures to maintain an active EPA Identification number, and failure to prepare a business plan when handling hazardous materials. The site is listed as a drycleaners in the Federal Drycleaners database. The facility appeared to have operated from as early as 1990 to 2018. Based on data obtained through GeoTracker, the site is an active Site Cleanup Program with the California Regional Water Quality Control Board, Los Angeles Region (LARWQCB), in the site assessment phase. A Draft Stage I Investigation Report, dated March 4, 2022, was prepared and submitted to the LARWQCB by Rincon Consultants, Inc.

A LUST case is reported for the Shell Oil gasoline service station located at 1200 Beryl Street in the adjacent shopping center to the northwest. The case is a reported release of gasoline and was issued a NFA by the County of Los Angeles Department of Public Works on April 3, 2012.

1.4 **Previous Sampling Activities**

In October, 2019, Converse advanced a total of 14 soil borings to 15 feet below ground surface (bgs) and one soil boring to 30 feet bgs. Soil samples were collected from 2, 5, 10 and 15 feet bgs in the 15 foot borings and 2, 5, 10, 20 and 20 feet bgs from the 30 foot boring. Select soil samples were analyzed for volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), Title 22 metals, organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs), and semi-volatile organic compounds (SVOCs). Ten of the borings were converted to multi-depth soil vapor probes and soil vapor samples were collected and analyzed for VOCs and methane.

Converse reported the following soil sampling results:

"Ten (10) metals were reported in the soil samples: barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, vanadium, and zinc. All the metals were reported at concentrations less than the residential screening levels, and less than their hazardous waste thresholds.

TPH in the heavy oil range was detected in two (2) samples, BC14-2 and BC15-2 at concentrations of 20.9 and 123 milligrams per kilogram (mg/kg), respectively. Both concentrations are below the screening level of 180,000 mg/kg. TPH in the gasoline and diesel ranges was not detected in any of the samples analyzed.

Concentrations of the OCPs 4,4' DDE and 4,4'-DDT were detected in sample BC10-2 at concentrations of 254 and 30 micrograms per kilogram (µg/kg), respectively. These concentrations are below their residential screening levels of 2,000 mg/kg, and 1,900 µg/kg, respectively. No other OCPs were identified in any of the samples analyzed.

No OPPs, VOCs, or SVOCs were detected in the soil samples analyzed.

Converse reported the following soil vapor sampling results:

"13 of the 16 VOCs were detected at levels below their screening levels [(SLs)] for residential land use.

"Benzene was detected in two (2) samples. Sample BC7-5 had a concentration of 8.0 micrograms per cubic meter (μ g/m³). The concentration exceeds the residential SL for benzene of 3.2 μ g/m³, but is below the SL for commercial land use of 14 μ g/m³. Sample BC6-15 had a benzene concentration of 22 μ g/m³ which exceeds both the residential and commercial SLs.

"Chloroform was detected in four (4) samples, BC4-15, BC9-5, BC10-5, and BC10-15 at concentrations of 8, 54, 27, and 26 μ g/m³, respectively. All of these concentrations exceed the residential SL of 4.1 μ g/m³, and with the exception of sample BC4-15, the concentrations also exceeded the commercial SL of 18 μ g/m³.

"PCE was detected in 29 of the 30 soil-vapor samples at a maximum concentration of 2,290 μg/m³ in sample BC14-15. Five (5) of the reported

concentrations are less than the residential SL of 15 ug/m^3 , and concentrations in 4 of the samples exceeded the residential SL but are less than the commercial SL of 67 $\mu g/m^3$. The remaining 20 concentrations exceed the commercial SL

"Methane concentrations were not detected at levels exceeding the measured background reading of 0.1 [parts per million volume (ppmv)] in any of the soil vapor probes during either screening event."

Based on the soil and soil vapor sampling results, Converse concluded that:

"PCE was detected in 24 of the 30 samples at concentrations in excess of the residential SL. Several of the concentrations were also significantly in excess of the commercial SL. The former dry cleaners that operated at the northwestern adjoining property is suspected to be the source of the PCE, as concentrations generally decrease to the south across the Site with distance from the cleaners location.

"Benzene was detected in two (2) of the 30 samples with one (1) sample in excess of the residential SL, and one (1) sample in excess of both the residential and commercial SLs. The detections were in samples from locations BC6 and BC7 in the northcentral portion of the Site. Based on the lack of benzene detections at location BC1, BC8, and BC9, the Shell Service Station on the northwestern adjoining property (1200 Beryl Street) does not appear to be a potential source. Leaks from automobiles in the parking lots are a potential source of benzene.

"Chloroform was detected in four (4) of the 30 samples. The detections were in samples from locations BC4, BC9, and BC10 in the southern portion of the Site. One (1) sample exceeded the residential SL, and three (3) samples exceeded both the residential and commercial SLs. Sources of the chloroform detected are unknown, but may potential include leaky water pipes, as chloroform is a byproduct of the chlorination process used in most municipally supplied drinking water."

Based on the previously reported soil sampling results, known environmental liabilities in soil have not been identified in the soil at the Site. Five soil borings were advanced on the area of the Site that contains the previously abandoned oil well, Simmons #2, and one two samples were reported with detectable TPH concentration, both in the oil range, with the maximum detection of 123 mg/kg.

Leighton does not recommend any targeted excavation and/or remediation of soil at this time due to existing soil data. Leighton does not recommend any further investigations of known of suspected environmental liabilities.

1.5 Soil Vapor Results

As reported in the Converse Phase II report, PCE was reported at concentrations exceeding the residential and commercial SL. However, indoor air vapor samples either were not reported above the residential screening levels for the VOC, were not detected in soil gas, or were generally consistent with ambient air sample results (Converse, 2020). As stated in the Environmental Impact Report for the project (Wood Environmental & Infrastructure Solutions Inc., 2021):

"The foundations of all newly proposed structures – including the RCFE Building as well as the buildings constructed as a part of the Phase 2 development program – would be constructed over a gravel layer which would be topped by a thick (40 to 100 millimeter) vapor-intrusion barrier system to prevent subsurface contaminated vapors from entering an overlying structure. Additionally, the foundations would be designed with subgrade piping to convey volatized PCE through carbon filters before outgassing the vapor at a controlled rate."

Based on the proposed subslab vapor barrier, the previous indoor air monitoring data, the fact that PCE was not detected in soil samples at the site, Leighton does not recommend any additional mitigation measures beyond the vapor barrier be conducted by BCHD in regard to the planned redevelopment of the Site. Third party remediation of off-site sources of PCE in soil and/or soil vapor may be warranted to reduce the concentration and mass of PCE in soil vapor at the Site.

2.0 ACTIVITIES DURING DEMOLITION ACTIVITIES

The following activities will be conducted by BCHD's environmental consultant during Site demolition and grading activities.

2.1 Activities During UST Removal

During the removal of the 10,000-gallon diesel UST, BCHD's environmental consultant will observe the excavation and removal of the UST and collect soil samples from beneath the UST excavation. In general, a minimum of two soil samples will be collected from beneath the UST in the approximate areas under the fill ports. If staining, discoloration, or odors are observed in the UST excavation, additional samples may be collected. Soil samples are also typically collected along the path of any subsurface piping connected to the UST. Specific soil sampling requirements will be developed after consultation with the regulatory authority overseeing the removal of the UST.

Soil samples will be submitted to a California-certified environmental laboratory for analysis. Typical analytical testing may include United States Environmental Protection Agency (USEPA) method 8015M for diesel/oil. If the sample results indicate the presence of TPH, the samples may also be analyzed for Title 22 metals by USEPA methods 6010/7000 and for SVOCs by USEPA method 8270. Additional sampling may be required by the regulatory authority overseeing the removal of the UST.

2.2 Activities During Pavement and Slab Removal

During the demolition of asphalt paving in parking lots, slab and slab demolition, the BCHD's environmental consultant will monitor the demolition work for signs of potential environmental liabilities. These include, but are not limited to, straining, discoloration, and odorous materials. Additionally, the BCHD environmental consultant will monitor for signs of previously unidentified environmental liabilities such as unidentified USTs, wells, and hydraulic lifts.

3.0 REMEDIAL ACTION GOALS FOR SOIL

No known environmental impacts or chemicals of potential concern (COPCs) have been identified in the Site soils in excess of established SLs for residential sites. If needed, Remedial Goals (RGs) will generally be established based on California Department of Toxic Substance Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note 3, DTSC-Modified Screening Levels (DTSC, 2022). The RG for arsenic, if required, will be the DTSC HERO HHRA Note Number 11, Southern California Ambient Arsenic Screening Level (DTSC, 2020) of 12 mg/kg. Alternative, risk based RGs for multiple COPCs may be established as part of a Human Health Risk Assessment if significant previously unidentified environmental liabilities are encountered.

4.0 RESPONSE TO PREVIOUSLY UNIDENTIFIED ENVIRONMENTAL LIABILITIES

During Site excavation and grading operations, there is the potential to encounter previously unidentified structures that may present environmental liabilities and risks for the Site. All unidentified structures will be documented and photographed. The BCHD environmental contractor's staff shall be on site during slab removal activities to document potential environmental liabilities, if they are encountered.

4.1 Site Specific Health and Safety

A site-specific Health and Safety Plan (HASP) will be prepared prior to excavation and monitoring activities and will include descriptions of activities that may occur if environmental liabilities are encountered. All workers will be provided an opportunity to review the HASP prior to initiating any intrusive work that may be performed at the Site. Construction and remediation contractors will be required to prepare their own site-specific HASP. The HASP will incorporate the requirements specified by Cal-OSHA Hazardous Waste Operations Standards (Title 29 CFR, Section 1910.120) and California Code of Regulations (Title 8 CCR, Section 5192). The HSP will also outline the anticipated physical and chemical hazards that may be encountered at the Site.

Appropriately trained personnel are required to be onsite and available to actively monitor soil that will be exposed during the excavation activities and implement recommendations of the HASP. Site personnel will meet for daily safety briefings to discuss potential hazards at the beginning of each workday, when new personnel are introduced to the project, and when new Site conditions warrant such meetings. These meetings will include, at a minimum, identification and discussion of potential workplace hazards and problems so that appropriate control measures can be implemented. Field activities will be performed in accordance with the safety protocols established in the HASP. The potential for serious injuries can be reduced by holding daily safety meetings to promote worker awareness.

4.2 Underground Storage Tanks

If a previously unidentified UST is encountered during the site demolition or grading activities, a licensed contractor will be mobilized to the site to conduct UST closure activities. The UST will be exposed, and the contents sampled to evaluate if the UST can be removed. If the UST has not been filled with slurry, or other solid material, any residual liquid will be sampled and profiled for disposal, the liquid will

be evacuated and transported off site for disposal in accordance with California and federal regulations.

The UST removal will be permitted as required and the UST will be removed in accordance with local and state requirements. The soil underlying the UST will be sampled in a minimum of two locations for TPH, VOCs, and Title 22 Metals. Based on the contents of the UST, and the results of the soil samples, additional soil excavation may be recommended.

4.3 <u>Vertical Features and Structures</u>

If a previously unidentified vertical structure, such as a hydraulic lift or a dry well is encountered during Site demolition or grading activities, the BCHD environmental contractor will attempt to identify the depth of the structure and if any potentially hazardous materials are associated with the structure. The structure will be removed, and soil samples will be obtained from the nearby soil. A boring will be advanced adjacent to the structure to a minimum of 10 feet below the depth of the structure and soil samples will be collected at five-foot intervals. The soil samples will be analyzed for TPH, SVOCs, and Title 22 Metals. Soil samples will be screened in the field for the presence of VOCs and soil samples may be subsampled in accordance with USEPA Method 5035 and analyzed for VOCs by USEPA Method 8260.

4.4 Horizontal Features and Structures

If a previously unidentified horizontal structures are encountered during site demolition or grading activities, the BCHD environmental contractor will sample the underlying soil at a rate of 1 sample per 25 linear feet of the structure, with additional samples at identified bends as required. Examples of potential unidentified structures include, but are not limited to liquid fuel pipelines. Sewer lines connected to site plumbing, water lines, electrical conduits and natural gas lines are not considered horizontal features for this purpose.

Soil samples will be collected as close as practical under the structure. Additional samples may be collected depending on the type of structure. Samples will be analyzed for TPH, VOCs, and Title 22 Metals in the case of liquid fuels lines and other similar structures.

4.5 Stained or Odorous Soils

During demolition and grading activities, if stained, discolored, or odorous soil is encountered, the area will be documented, and excavation activities (if ongoing) will be ceased in the area and the BCHD environmental contractor will be contacted to quantify the extent and nature of the potential impacts. Potential source of stained, discolored or odorous soil include, but are not limited to, liquid fuel, machine or other lubricating oils, and motor oils.

4.6 <u>Limited Remedial Excavations</u>

For areas of limited extent, or for the purpose of expediting remedial activities, soil suspected of being impacted with COPCs will be excavated, stockpiled, and profiled for disposal. Soil stockpiles generated during remedial excavations will be underlain by plastic sheeting or containerized. Soil samples will be collected of the stockpiled soil to profile the soil for disposal as described in Section 5.0.

Following any remedial excavation, samples will be collected from the bottom and sidewalls of the excavated area to document the conditions of the surrounding soil. Samples will be collected at a rate of 1 per 20 linear feet of sidewall with a minimum of one per sidewall. Bottom samples will be collected at a rate of 1 for 400 ft² of excavation. Soil samples will be analyzed for COPCs identified during soil profiling, and may include TPH, Title 22 metals, VOCs and SVOCs. For areas with detectable VOC emissions utilizing an organic vapor analyzer (OVA), sub-samples will be collected in accordance with USEPA Method 5035 and analyzed for VOCs using USEPA Method 8260.

For areas where extensive impacts are suspected, the soils may be profiled in place to define the COPCs and delineate the extent of the impacts. A separate remedial work plan may be prepared detailing the proposed remedial activity which will also present any sampling data collected in the area.

4.7 Compliance with South Coast Air Quality Management District Rules

It is not anticipated that VOCs or other toxic air contaminant will be encountered at concentrations triggering monitoring or other activities under South Coast Air Quality Management District (SCAQMD) Rules 1166 or 1466.

4.7.1 **SCAQMD Rule 1166**

It is not anticipated that VOCs will be encountered in soil at concentrations that will exceed the SCAQMD threshold of 50 ppmv for definition as "VOC contaminated soil." Field personnel will monitor soil excavations in areas where suspected VOC impacts are identified. If the concentrations of VOCs as measured by the OVA exceed 50 ppmv as "measured before suppression materials have been applied and at a distance of no more than three inches from the surface of the excavated soil," the SCAQMD will be notified and subsequent excavation activities in this area will be conducted in accordance with an approved SCAQMD Rule 1166 Permit.

4.7.2 **SCAQMD Rule 1466**

Excavation, transportation, placement, and handling of material shall result in no visible dust migration. If soil impacted by toxic air contaminants (as defined by the SCAQMD) is encountered, additional control and monitoring requirements may be required to demonstrate compliance with SCAQMD Rule 1466. The contractor shall utilize appropriate dust and odor control measures.

4.8 Contaminant Reduction Zone Areas

For any removal action in relation to COPCs encountered in a previously unidentified area of the Site, the Contractor will construct and/or maintain a contaminant reduction zone and a decontamination pad for trucks transporting soil, construction equipment, non-disposable field equipment, and personnel at the Site. The decontamination zone should be lined with plastic sheeting to collect soil or debris that may accumulate. To the extent practical, loose soil or debris will be removed from the tires, beds, cabs, and rails of trucks that are utilized to transport petroleum hydrocarbon-affected soil or debris prior to leaving the work area. All non-disposable equipment that comes in contact with impacted soil will be drydecontaminated using chisels, scrapers, shovels, brooms, and/or hand-held brushes as necessary. Dry decontamination will take place in a pre-designated area that has been covered with plastic sheeting. The Contractor shall collect and dispose of solids removed during decontamination (such as soil and/or debris) at an appropriately permitted disposal facility. Any wastewater generated from decontamination activities during the completion of the proposed scope of work will be properly containerized in secure bins, profiled, and disposed of at an appropriately permitted disposal facility.

4.9 Engineering Controls for Stockpiled Soil

The following engineering controls will be implemented for soil stockpiles excavated in areas suspected to be impacted by COPCs requiring remediation:

- Temporary waste piles must be covered by plastic sheeting (not less than 10 mils thick) to adequately prevent rainwater infiltration, control fugitive dust, and prevent other nuisances.
- Temporary waste piles not stored on pavement must be underlain by either plastic sheeting (not less than 10 mils thick) or a liner of low permeability that will prevent leachate from infiltrating to groundwater.
- In addition to the conditions stated herein, temporary waste piles must conform to applicable provisions of ordinances and regulations issued by the local regulatory agencies for the City of Redondo Beach and Los Angeles County.

Best Management Practices (BMPs) must be incorporated into soil management procedures. BMPs are used to effectively control stormwater run-on and run-off from stockpiled soil. BMPs can include the following measures and should be implemented in accordance with the general site construction plans and are the responsibility of the general contractor:

- Locate soil stockpiles away from concentrated flows of stormwater, drainage courses, and inlets.
- Protect all soil stockpiles from stormwater run-on using a temporary perimeter sediment barrier such as berms, dikes, silt fences or gravel bag barriers.
- Implement wind erosion control practices as appropriate on all stockpiled material.

4.10 Dust Control

Excavation, transportation, placement, and handling of material shall result in no visible dust migration. If VOC contaminated soil is encountered, additional control and monitoring requirements may be required to demonstrate compliance with SCAQMD Rule 1166 and/or SCAQMD Rule 1466. The contractor shall utilize appropriate dust and odor control measures.

5.0 SOIL PROFILING AND DISPOSAL ACTIVITIES

All soil generated during the investigation and removal of previously unidentified environmental liabilities will be sampled and profiled in accordance with the requirements for disposal from facilities permitted by California and/or the USEPA to recycle and/or dispose of soil shipped to that facility under that classification. Soil stockpile samples for potential reuse on site will be sampled in accordance with the following frequency:

- For stockpiles up to 1,000 cubic yards (yd³): 1 sample per 250 yd³;
- For stockpiles of 1,000 to 5,000 yd³: 4 samples for first 1,000 cubic yards plus 1 sample per each additional 500 ys³; and
- For stockpiles greater than 5,000 yd³: 12 samples for first 5,000 yd³ plus 1 sample per each additional 1,000 yd³.

Soil stockpiles, or portions of stockpiles, where all COPCs are below the HHRA Note 3 DTSC-modified residential screening levels or contain arsenic at concentration below 12 mg/kg may be reused on site without restriction. If a HHRA is developed for areas with multiple COPCs, alternative RGs may be proposed and utilized for guidance on the reuse of stockpiled soil.

6.0 SITE RESTORATION ACTIVITIES

The removal of previously unknown environmental liabilities may be conducted in advance of Site construction activities associated with future development. The following activities will be undertaken for remedial activities when redevelopment is not scheduled to commence following remediation. For activities followed closely by remediation, Site restoration activities will be conducted by the general contractor and are outside the scope of this plan.

6.1 Shallow Excavations Up to Four Feet

For excavations shallower than four feet in depth, excavation sidewalls will be sloped to a minimum of 2:1 to prevent potential fall hazards and the Site will be secured to prevent unauthorized Site entry.

Additional measures may be taken based on grading permit requirements. Additionally, if the excavation activities are undertaken during the rainy season, additional temporary measures may be undertaken to prevent stormwater from pooling in the excavation areas.

6.2 Excavations Deeper than Four Feet

For any excavations deeper than four feet, the excavation will be backfilled to a minimum depth of four feet below the surrounding ground surface. Excavation sidewalls will be sloped to a minimum of 2:1 to prevent potential fall hazards and the Site will be secured to prevent unauthorized Site entry. Soil utilized for backfilling may include soil imported from an off-site location demonstrated not to contain COPCs in excess of concentrations for unrestricted land use, from Site soils outside the excavation area, or from excavated soil previously sampled and demonstrated not to contain COPCs in excess of concentrations for unrestricted land use.

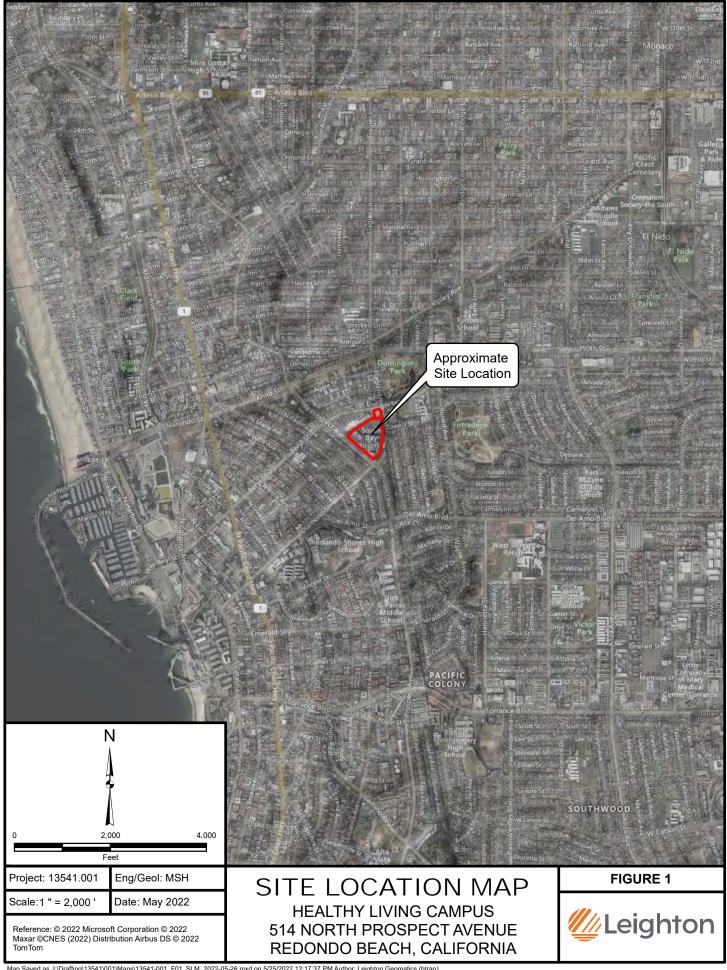
Additional measures may be taken based on grading permit requirements. Additionally, if the excavation activities are undertaken during the rainy season, additional temporary measures may be undertaken to prevent stormwater from pooling in the excavation areas.

7.0 CONCLUSIONS AND RECOMMENDATIONS

An environmental consultant shall be on site during slab removal activities to document potential environmental liabilities, if they are encountered.

If previously unknown environmental liabilities are encountered, including, but not limited to USTs, clarifiers, or stained soil, the areas will be investigated and remediated in accordance with Sections 4.0 through 6.0 of this SMP.

If significant previously unknown environmental liabilities are encountered, a separate work plan may be developed to sample and remediate the area as appropriate.


8.0 REFERENCES

- California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3, Characteristics of Hazardous Waste.
- California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO), 2020. Human Health Risk Assessment Note Number 11, Southern California Ambient Arsenic Screening Level. December 29.
- DTSC, HERO, 2022. Human Health Risk Assessment Note Number: 3, DTSC-modified Screening Levels. May.
- Converse Consultants (Converse), 2019. Phase I Environmental Site Assessment Report, 514 North Prospect Avenue, Redondo Beach, California. May 15
- Converse, 2020. Phase II Environmental Site Assessment Report, 510, 512, 514 and 520 North Prospect Avenue, Redondo Beach, California, 90277. February 26
- United States Environmental Protection Agency, 2019. Region 9 Residential Regional Screening Level. November.
- Wood Environmental & Infrastructure Solutions Inc., 2021. Final Environmental Impact Report for the Beach Cities Health District Healthy Living Campus Master Plan. September

FIGURES

APPENDIX A Converse Consultants Phase II ESA

CONVERSE CONSULTANTS

Phase II Environmental Site Assessment Report

Beach Cities Health District 510, 512, 514, and 520 North Prospect Avenue Redondo Beach, California 90277

> Converse Project No. 18-41-296-02 February 26, 2020

Prepared For:

Beach Cities Health District 514 North Prospect Avenue Redondo Beach, California 90277

Prepared By:

Converse Consultants 717 S. Myrtle Avenue Monrovia, California 91016 February 26, 2020

Mr. Leslie Dickey Executive Director of Real Estate Beach Cities Health District 514 North Prospect Avenue Redondo Beach, California 90277

Subject: PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

510, 512, 514 and 520 North Prospect Avenue

Redondo Beach, California 90277 Converse Project No. 18-41-296-02

VAN FLEET

Mr. Dickey:

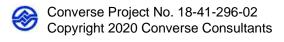
Converse Consultants (Converse) is pleased to submit the attached report that summarizes the activities and the results of a *Phase II Environmental Site Assessment* (*Phase II ESA*) that was conducted at the referenced property.

We appreciate the opportunity to be of service. Should you have any questions or comments regarding this report, please contact Michael Van Fleet at (909) 796-0544 or Norman Eke at (626) 930-1260.

CONVERSE CONSULTANTS

Michael Van Fleet, PG

Senior Geologist


Dist.: 1/Addressee

Norman Eke

Senior Vice President/Managing Officer

Table of Contents

		<u>Pa</u>	age	
1.0	INTRO	DDUCTION	1	
2.0	BACKGROUND			
	2.1	Site Description and Features	2 2	
	2.2	Physical Setting 2.2.1 Topography	3 3	
	2.3	Site History and Land Use	3	
	2.4	Adjacent Property Land Use	4	
	2.5	Summary of Previous Assessment Reports	4	
3.0	WORK PERFORMED AND RATIONALE		5	
	3.1	Scope of Assessment	5 5	
	3.2	Soil Sample Collection	7	
	3.3	Soil Vapor Probe Construction and Sampling	7	
	3.4	Methane Screening	7	
	3.5	Indoor Air Sample Collection	8	
	3.6	Field Quality Assurance/Quality Control	8	
	3.7	Chemical Analytical Methods	8	
4.0	PRESENTATION AND EVALUATION OF RESULTS			
	4.1	Subsurface Conditions	10	
	4.2	Analytical Results 4.2.1 Soil Samples 4.2.2 Soil Vapor Samples	10	

		4.2.3 Methane Screening Results	12		
		4.2.4 Ambient Air Samples	12		
	4.3	Data Quality Assurance/Quality Control	13		
		4.3.1 Hold Times	13		
		4.3.2 Laboratory Quality Assurance	13		
		4.3.3 Practical Quantitation Limits	14		
5.0	INTERPRETATION AND CONCLUSIONS		15		
	5.1	RECs and Potential Release Area(s)	15		
	5.2	Conceptual Model Validation/Adequacy of Investigations	15		
	5.3	Absence, Presence, Degree, Extent of Target Analytes	15		
	5.4	Other Concerns	17		
		5.4.1 Significant Assumptions	17		
		5.4.2 Limitations and Exceptions	17		
		5.4.3 Special Terms and Conditions	17		
	5.5	Conclusions/Objectives Met	17		
6.0	REC	OMMENDATIONS	20		
7.0	RELI	ANCE	21		
8 N	RFF	REFERENCES AND SOURCES OF INFORMATION 2			

FIGURES

Figure 1 – Site Vicinity

Figure 2 – Site Plan

Figure 3 – Sample Locations

TABLES

Table 1 – Summary of Analytical Results – Metals in Soil

Table 2 – Summary of Analytical Results – Non-Metals in Soil

Table 3 – Summary of Analytical Results – VOCs in Soil Vapor

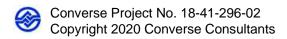

Table 4 – Methane Screening Results

Table 5 – Summary of Analytical Results – VOCs in Indoor/outdoor Air

APPENDICES

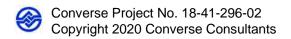
Appendix A – Application for Authorization to Use

Appendix B – Laboratory Analytical Reports

1.0 Introduction

This *Phase II Environmental Site Assessment (ESA)* report has been prepared by Converse Consultants (Converse), on behalf of Beach Cities Health District (BCHD), for the sampling conducted at 510, 512, 514, and 520 North Prospect Avenue, and the adjoining vacant parcel located at Flagler Lane and Beryl Street (Flagler lot) in Redondo Beach, California (Site). Assessment activities were completed on the BCHD Campus, and the Flagler lot. The location of the Site is shown on Figure 1 - Site Vicinity, and the configuration of the Site is presented on Figure 2 – Site Plan.

Converse completed a Phase I ESA, dated May 15, 2019, for the Site. The assessment revealed no evidence of recognized environmental conditions in connection with the Site. However, the following on-site environmental concerns that do not rise to the level of a REC were noted:


- The 10,000-gallon diesel-fuel UST currently operating at the Site.
- The location of the Site within the Torrance Oil Field, and the presence of an abandoned oil well on Parcel 2.

The following adjoining and adjacent environmental concerns were also noted:

- The current operation of a Shell Service Station on the northwestern adjoining property (1200 Beryl Street).
- The former dry cleaners that operated at the northwestern adjoining property (1232 Beryl Street).
- The former landfill located on northeastern adjoining property (200 Flagler Lane).

For this Phase II ESA Converse generally followed the standard practices of the American Society for Testing Materials (ASTM) Designation: E1903-11 Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM, E 1903-11). The purpose of conducting the Phase II ESA in accordance with ASTM E1903-11 is to acquire and evaluate information sufficient to achieve the objective(s) set forth in the "Statement of Objectives" developed by the User and Converse. The objectives of the assessment were to:

- Evaluate environmental concerns in connection with the Site that were identified during a Phase I ESA conducted by Converse.
- Identify if potential target analytes are present at concentrations greater than threshold criteria.

2.0 Background

2.1 Site Description and Features

Details in the following sections regarding the Site and surrounding areas were obtained from the Converse Phase I ESA dated May 15, 2019.

2.1.1 Current Uses of the Site

The Site is owned by BCHD and is developed with a former hospital building (currently a long-term care facility, and medical office space), two (2) medical office buildings, a maintenance building, and two (2) parking garages. A portion of the Site (Flagler Lot) is vacant land.

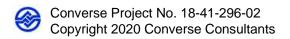
2.1.2 Location

The Site is located at 510, 512, 514, and 520 North Prospect Avenue, Redondo Beach, California, on the north side of the intersection of Prospect Avenue and Diamond Street. The Site is located approximately 2.4-miles southwest of the San Diego (405) Freeway, and 1.1-mile east of the Pacific Ocean.

The Site consists of two (2) parcels and is approximately 10.38-acres. The Los Angeles County Assessor's Parcel Numbers (APNs) for the Site are 7502-017-901 and -902. The legal description of the Site is described as the following:

APN: 7502-017-901 (Parcel 1)

*TR=PARCEL MAP AS PER BK 144 P 2-3 OF PM LOT 1


APN: 7502-017-902 (Parcel 2)

*TR=PARCEL MAP AS PER BK 144 P 2-3 OF PM LOT 2

A third parcel that is part of this report is currently owned by the City of Torrance and includes a portion of undeveloped hillside, and a portion of Flagler Lane. No parcel number was available for this parcel.

2.1.3 Site and Vicinity General Characteristics

The Site consists of two (2) irregular-shaped parcels containing approximately 10.38-acres. The main parcel (Parcel 1) slopes from the northeast to the northwest and is located on a hillside. The Site is developed with four (4) buildings, and two (2) parking garages. The buildings are occupied by Beach Cities Health District Center for Health

and Fitness, and Silverado (514 N. Prospect Avenue), Cancer Care Associates (510 N. Prospect Avenue), and Providence (520 N. Prospect Avenue. The remainder of the Site consists of asphalt-covered parking areas. The smaller parcel (Parcel 2) is located approximately 20-feet lower in elevation than Parcel 1, and is currently vacant land. A third parcel (Parcel 3) that is included in this assessment is one that Beach Cities Healthcare District is intending on purchasing, and consists of an undeveloped hillside and a portion of Flagler Lane located east of Parcels 1 and 2.

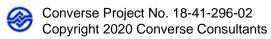
The Site fronts onto North Prospect Avenue on the southwest, and Beryl Street on the north. Properties in the general area are used for commercial and residential purposes.

2.2 Physical Setting

2.2.1 Topography

The Site is located approximately 170 feet above mean sea level with surface topography sloping towards the south/southeast (United States Geological Survey [USGS] Topographic Map, Redondo Beach/Torrance, California, 2018).

2.2.2 Geology


The Site is underlain by unconsolidated and semi-consolidated alluvium, lake, playa, and terrace deposits (Division of Mines and Geology, Geologic Map of California, 2010).

2.2.3 Hydrogeology

According to case files related to a former leaking underground storage tank (LUST) case at the Site, the depth to groundwater at the Site is anticipated to be approximately 150 feet beneath ground surface (bgs) and the direction of flow is expected to be to the east. According to a prior site investigation report, several soil borings were completed at the Site to depths of 40-feet bgs, and groundwater was not encountered in any of the borings.

2.3 Site History and Land Use

Based on a historic records reviewed (topographic maps and aerial photographs) as part of the Phase I ESA the Site appeared to be undeveloped at least as of 1896. The Site was developed for agricultural use, including a pond in the center of Parcel 1, from as early as 1924 to 1941. Parcel 1 appeared vacant, and

Parcel 2 appeared developed with a small pond in 1947. By 1951, the Site appeared partially graded, and by 1956 the Site appeared developed with a baseball field. By 1963, the Site appeared developed with the existing hospital building, Parcel 2 appeared vacant, and Parcel 3 appeared developed with part of a roadway. In 1976, the second medical office building (510 N. Prospect Avenue) was constructed on Parcel 1. In 1989, the third medical office building was constructed on Parcel 1. Parcel 2 has remained vacant.

2.4 Adjacent Property Land Use

North: Beryl Street followed by residential.

Northeast: Intersection of Flagler Lane and Beryl Street followed by

Dominguez Park (former landfill), 200 Flagler Lane.

Northwest: Retail Shopping Center (1202-1262) Beryl Street, and Shell Service

Station (1200 Beryl Street).

South: North Prospect Avenue followed by residential.

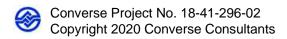
Southeast: Intersection of North Prospect Avenue and Flagler Lane followed by

residential.

Southwest: North Prospect Avenue followed by residential.

East: Flagler Lane followed by residential.

West: North Prospect Avenue followed by residential.


2.5 Summary of Previous Assessment Reports

Converse completed a Phase I ESA, dated May 15, 2019, for the Site. This assessment revealed no evidence of recognized environmental conditions (RECs) in connection with the Site. However, the following on-site environmental concerns that do not rise to the level of a REC were noted:

- o The 10,000-gallon diesel-fuel UST currently operating at the Site.
- The location of the Site within the Torrance Oil Field, and the presence of an abandoned oil well on Parcel 2.

The following adjoining and adjacent environmental concerns were also noted:

- The current operation of a Shell Service Station on the northwestern adjoining property (1200 Beryl Street).
- The former dry cleaners (Coury & Son Cleaners) that operated from as early as 1990 to 2018 at the northwestern adjoining property (1232 Beryl Street).
- The former landfill located on northeastern adjoining property (200 Flagler Lane).

3.0 Work Performed and Rationale

3.1 Scope of Assessment

A conceptual model was developed based on data obtained from the prior assessment reports.

3.1.1 Target Analytes

Data obtained during the Phase I ESA indicated that methane, volatiles, hydrocarbons, and metals could be present in soil or soil vapor beneath the Site.

3.1.2 Target Analytes First Entered the Environment

Data indicate that target analytes would have first entered the environment by surface spills or releases to soil or be naturally occurring in the case of methane.

3.1.3 Environmental Media and Locations Most Likely to Have the Highest Concentrations of Target Analytes

Environmental media of concern are soil and soil vapor. Locations include a historic oil well, adjacent landfill and dry cleaner, UST use, and historic agricultural use.

The scope of this Phase II ESA was developed to investigate areas anticipated for site redevelopment and to target areas of concern/features (USTs, oil-field related activities, adjacent properties, etc.) that may have a potential for contributing to subsurface contamination that may require mitigation for proposed redevelopment.

This *Phase II ESA* consisted of the following primary elements:

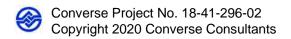
- A geophysical survey was conducted to determine utility locations, and to clear the proposed boring locations. The geophysical survey did not identify the specific location of the former oil and gas well on the Flagler Lot, so Department of Oil, Gas and Geothermal Resources (DOGGR) records were reviewed to determine an approximate location. Review of agency records did not provide details on the abandonment method of the plugged oil well.
- A review of Regional Water Quality Control Board (RWQCB) records was completed to determine the location of former underground storage

- tanks (USTs) at the Site for the purpose of determining where to locate one (1) of the borings (BC6).
- A total of 15 soil borings were completed at the Site. One (1) boring (BC1) located along the northern Property boundary (nearest the former drycleaners on the northern adjoining property) was completed to a depth of 30 feet below ground surface (bgs). The remaining 14 borings (BC2 through BC15) were completed to depths of 15 feet bgs. Boring BC1 was advanced to a greater depth due to the elevation difference between the Site and the adjacent property.
- Soil samples were collected from boring BC1 (deep boring) at approximate depths of 2, 5, 10, 20 and 30-feet bgs. Soil samples from each of the remaining borings were collected at approximate depths of 2, 5, 10, and 15-feet bgs.
- Soil vapor probes were installed in the deep boring (BC1) at depths of 20 and 30-feet bgs. Soil vapor probes were installed in the nine (9) remaining boreholes at depths of 5 and 15-feet bgs.
- All soil and soil vapor samples were sent to Jones Environmental, Inc for analysis as follows:
 - Two (2) soil samples from each boring (30 total) were analyzed in accordance with Environmental Protection Agency (EPA) Method 8260 for Volatile Organic Compounds (VOCs), 8015M for Total Petroleum Hydrocarbons (TPH), and 6010B for Title 22 Metals.
 - The shallow soil samples from each boring were also analyzed for organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) in accordance with EPA Methods 8081A, and 8141A, respectively.
 - The deep soil samples from the Flagler Lot (borings B11 through B15) were analyzed for semi-volatile organic compounds (SVOCs) in accordance with EPA Method 8270C.
 - All soil vapor samples were analyzed for VOCs in accordance with EPA Test Method 8260B. In addition, each of the soilvapor probes were screened for methane using a LandTech GEM 5000. Static pressure, and concentrations of oxygen and carbon dioxide were also screened.
- Ambient air samples were collected from one (1) exterior and five (5) interior locations.

3.2 Soil Sample Collection

On October 22 and 23rd, 2019, a total of 15 borings were completed using direct-push (Geoprobe) drilling methods. One (1) boring (BC1) was completed to a depth of 30-feet bgs. The other 14 borings (BC2 through BC15) were completed to depths of 15-feet bgs. The approximate boring locations are indicated on Figure 3, Sample Locations.

Soil samples were collected in acetate sleeves at depths of 2, 5, 10, 20, and 30-feet from location BC1, and from depths of 2, 5, 10, and 15-feet bgs from the other 14 locations. Encore sample containers were used to collect subsamples of soil from each sleeve in accordance with EPA Method 5035 for potential analysis for VOCs. A portion of each sample was also screened in the field for VOCs using a photo-ionization detector (PID).


3.3 Soil Vapor Probe Construction and Sampling

Soil vapor probes were constructed using a two-inch porous soil vapor implant connected to ¼-inch Teflon tubing. The implants were surrounded by an approximate 1-foot sand pack that extended slightly above and below the implant. The remainder of each borehole was filled with hydrated bentonite granules. After installation, the probes were allowed to equilibrate for a minimum of 2 hours before they were purged and sampled.

Soil vapor samples were collected by a mobile laboratory at a flow rate of 200 milliliters per minute. Soil vapor sampling was completed in general accordance with the Advisory-Active Soil Gas Investigations by the California Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board (RWQCB), dated July 2015.

3.4 Methane Screening

After installation, the probes were allowed to equilibrate for a minimum of 96 hours before being screened. A second round of screening was conducted approximately 24 hours after the initial screening. The screening was conducted using a GEM 5000 landfill gas analyzer. The analyzer was used to initially check the probes for pressure. The lines were then purged and readings of gas concentrations were recorded. The meter measures concentrations of methane, carbon dioxide, oxygen, hydrogen sulfide, and carbon monoxide.

3.5 Indoor Air Sample Collection

Review of the initial soil vapor analytical data identified compounds present at concentrations in excess of their respective screening levels. Based on these findings a determination was made to expand the scope of the assessment to evaluate for potential vapor intrusion impacts to the indoor air. On December 20, 2019 Converse returned to the Site and placed sample canisters at five (5) interior locations, as well as at one (1) exterior location to evaluate background concentrations. Ambient air samples were collected in 6-liter summa canisters over a 24-hour period. The rooms in which the canisters were placed were generally closed during the sampling period, and included an office (CP-Office), a vacant suite (510-129), a storage room within a parking garage (520-8), and equipment rooms (514-SF-1 and 514-AH-10). The background sample (Ambient) was collected from the central plant courtyard. Sample locations are indicated on Figure 3. The sample containers were closed and retrieved from the site on December 21, 2019.

3.6 Field Quality Assurance/Quality Control

The following are some of the quality assurance and quality control measures that were taken to evaluate the quality of the data generated:

- Standard EPA sample handling protocol including chain-of-custody control were followed.
- New dedicated sampling equipment (Teflon tubing, acetate sleeves, encore containers) were used for the collection of samples.
- Reusable sampling equipment (cutting shoe) was decontaminated between uses.
- A shut-in test was conducted prior to the purging of soil vapor probes, and tracer gas was applied during the collection of samples, to evaluate the integrity of the fitting.

3.7 Chemical Analytical Methods

All soil and soil-vapor samples were submitted under chain of custody documentation to Jones Environmental, Inc. in Santa Fe Springs, California. The ambient air samples were delivered to Air Technology Laboratories, Inc. in City of Industry, California. Both labs are certified by the State of California Department Health Services for the analyses conducted.

Two (2) soil samples from each boring (30 total) were analyzed in accordance with EPA Method 8260 for VOCs, 8015M for TPH, and 6010B for Title 22 Metals.

The shallow soil samples from each boring were also analyzed for OCPs and OPPs in accordance with EPA Methods 8081A, and 8141A, respectively.

The deep soil samples from the Flagler Lot (boring B11 through B15) were analyzed for SVOCs in accordance with EPA Method 8270C.

All soil vapor samples were analyzed in onsite mobile laboratories for VOCs in accordance with EPA Test Method 8260B. In addition, each of the soil-vapor probes was screened for methane using a LandTech GEM 5000.

All ambient air samples were analyzed for VOCs in accordance with EPA Test Method TO-15 SIM.

4.0 Presentation and Evaluation of Results

4.1 Subsurface Conditions

During drilling activities, subsurface soils were observed to primarily be sandy with minor amounts of silt across the Site to depths of 30-feet bgs. Groundwater was not encountered in any of the borings completed to a maximum depth of 30-feet bgs during this assessment.

4.2 Analytical Results

A summary of the results is provided below. Copies of the laboratory analytical reports are included in Appendix A.

4.2.1 Soil Samples

Ten (10) metals were reported in the soil samples: barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, vanadium, and zinc. All the metals were reported at concentrations less than the residential screening levels, and less than their hazardous waste thresholds.

TPH in the heavy oil range was detected in two (2) samples, BC14-2 and BC15-2 at concentrations of 20.9 and 123 milligrams per kilogram (mg/kg), respectively. Both concentrations are below the screening level of 180,000 mg/kg. TPH in the gasoline and diesel ranges was not detected in any of the samples analyzed.

Concentrations of the OCPs 4,4' DDE and 4,4'-DDT were detected in sample BC10-2 at concentrations of 254 and 30 micrograms per kilogram (ug/kg), respectively. These concentrations are below their residential screening levels of 2,000 mg/kg, and 1,900 ug/kg, respectively. No other OCPs were identified in any of the samples analyzed.

No OPPs, VOCs, or SVOCs were detected in the soil samples analyzed.

Tabulated data for soil samples are presented in Tables 1 and 2.

4.2.2 Soil Vapor Samples

The following 16 VOCs were detected in one or more of the soil-vapor samples:

benzene tetrachloroethylene (PCE)

chloroform toluene

dichlorodifluoromethane trichloroethylene (TCE)

1,1-dichloroethene trichlorotrifluoromethane
ethylbenzene 1,2,4-trimethylbenzene

4-isopropyltoluene 1,3,5-trimethylbenzene

n-propylbenzene m,p-xylene styrene o-xylene

Tabulated soil vapor data is presented in Table 3.

All contaminant concentrations were compared to regulatory screening levels (SLs). The primary screening levels used were the Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) for soil vapor samples. For those compounds with no established ESLs (dichlorodifluoromethane, trichlorotrifluoromethane, 4-isopropyltoluene, and n-propylbenzene) soil vapor screening levels were calculated by applying an attenuation factor (AF) of 0.03 to the indoor air screening levels published by the Department of Toxic Substances Control (DTSC) or US Environmental Protection Agency (EPA).

- 13 of the 16 VOCs were detected at levels below their screening levels for residential land use.
- Benzene was detected in two (2) samples. Sample BC7-5 had a concentration of 8.0 micrograms per cubic meter (ug/m³). The concentration exceeds the residential SL for benzene of 3.2 ug/m³, but is below the SL for commercial land use of 14 ug/m³. Sample BC6-15 had a benzene concentration of 22 ug/m³ which exceeds both the residential and commercial SLs.
- Chloroform was detected in four (4) samples, BC4-15, BC9-5, BC10-5, and BC10-15 at concentrations of 8, 54, 27, and 26 ug/m³, respectively. All of these concentrations exceed the residential SL of 4.1 ug/m³, and with the exception of sample BC4-15, the concentrations also exceeded the commercial SL of 18 ug/m³.
- PCE was detected in 29 of the 30 soil-vapor samples at a maximum concentration of 2,290 ug/m³ in sample BC14-15. Five (5) of the reported concentrations are less than the residential SL of 15 ug/m³, and concentrations in 4 of the samples exceeded the

residential SL but are less than the commercial SL of 67 ug/m³. The remaining 20 concentrations exceed the commercial SL.

4.2.3 Methane Screening Results

A methane screening of each of the 30 soil vapor probes was conducted on October 28, 2019, and then a second screening was conducted a full 48 hours later on October 30. The screening was conducted using a Landtec GEM 5000 gas analyzer. Fixed gases that were monitored included methane, carbon dioxide, oxygen, hydrogen sulfide, and carbon monoxide. Pressure in each vapor probe was measured and recorded during the second screening event prior to analyzing gas concentrations.

During each screening event methane was noted to be measured by the instrument in background readings at a concentration of 0.1 parts per million by volume (ppmv). Methane concentrations were not detected at levels exceeding the measured background reading of 0.1 ppmv in any of the soil vapor probes during either screening event.

The maximum pressure measured was 0.70 inches of water in probe BC19-15.

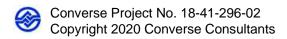
Methane screening data is presented in Table 4.

4.2.4 Ambient Air Samples

The following 22 VOCs were detected in one or more of the ambient air samples:

Benzene Methylene Chloride

Bromodichloromethane Tetrachloroethylene (PCE)
Carbon Tetrachloride Trichloroethylene (TCE)


Chloroethane Toluene

Chloromethane Trichlorofluoromethane (II)
Chloroform Trichlorotrifluoroethane
Dichlorodifluoromethane 1,1,2,2-Tetrachloroethane

Ethylbenzene Styrene

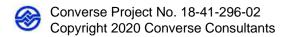
1,2-Dichloroethane Vinyl Chloridet-1,2-Dichloroethene m,p-xylene1,2-Dichloropropane o-xylene

Tabulated ambient air sample data is presented in Table 5.

All contaminant concentrations were compared to regulatory screening levels (ESLs, DTSC SLs, or EPA RSLs).

- Sixteen (16) of the 22 VOCs detected in ambient air samples (including PCE and TCE) were detected at maximum concentrations less than their respective screening levels for residential land use.
- Six (6) VOCs were reported in one (1) or more of the ambient air samples in excess of their residential SL: benzene, bromodichloromethane, chloroform, ethylbenzene, 1,1,2,2-tetrachloroethane, and vinyl chloride.
 - Three (3) of these compounds (bromodichloromethane, 1,1,2,2-tetrachloroethane, and vinyl chloride) were only reported in a single ambient air sample, and were not detected in any of the soil vapor samples.
 - Benzene and chloroform were the only compounds detected in soil vapor samples and above their residential screening level in multiple ambient air samples. With the exception of the sample collected from the parking garage storage room (520-8), the concentrations of these compounds in ambient air samples were generally consistent with the concentrations reported in the background outdoor air sample.

4.3 Data Quality Assurance/Quality Control


4.3.1 Hold Times

All soil samples were transported to the laboratory under chain-of-custody documentation and were analyzed within appropriate hold times.

All soil-vapor samples were collected by mobile laboratory personnel and analyzed onsite within appropriate hold times.

4.3.2 Laboratory Quality Assurance

The laboratories provided data to estimate precision, accuracy, and bias. The laboratory reports indicated that the method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives for soil and soil vapor.

4.3.3 Practical Quantitation Limits

Practical quantitation limits (PQL) and method detection limits (MDL) for soil and soil vapor samples were provided by the laboratories. The PQLs for the various analytes were as follows:

- VOCs in soil vapor ranged from 8.0 to 400 μg/m³.
- VOCs in ambient air ranged from 0.013 to 0.17 μg/m³.
- VOCs in soil ranged from 1.0 to 50 μg/kg.
- SVOCs in soil ranged from 100 to 1,000 μg/kg.
- TPH ranged from 1.0 to 10.0 ug/kg.
- Metals ranged from 0.02 to 5.0 mg/kg.
- Organochlorine pesticides ranged from 10 to 20 ug/kg.
- Organophosphorus pesticides ranged from 0.005 to 0.010 mg/kg.

5.0 Interpretation and Conclusions

5.1 RECs and Potential Release Area(s)

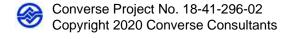
Converse completed a Phase I ESA for the Site, dated May 15, 2019. The assessment revealed no evidence of (RECs) in connection with the Site. However, the following on-site environmental concerns that do not rise to the level of a REC were noted:

- The 10,000-gallon diesel-fuel UST currently operating at the Site.
- The location of the Site within the Torrance Oil Field, and the presence of an abandoned oil well on Parcel 2.

The following adjoining and adjacent environmental concerns were also noted:

- The current operation of a Shell Service Station on the northwestern adjoining property (1200 Beryl Street).
- The former dry cleaners that operated at the northwestern adjoining property (1232 Beryl Street).
- The former landfill located on northeastern adjoining property (200 Flagler Lane).

5.2 Conceptual Model Validation/Adequacy of Investigations


It is our opinion that the field and analytical data validated the conceptual model.

5.3 Absence, Presence, Degree, Extent of Target Analytes

Soil: No compounds were reported in the soil samples at concentrations in excess of their respective screening levels.

Soil Vapor: Three (3) VOCs were reported at concentrations in excess of their respective screening levels; benzene, chloroform, and PCE.

 PCE was detected in 24 of the 30 samples at concentrations in excess of the residential SL. Several of the concentrations were also significantly in excess of the commercial SL. The former dry cleaners that operated at the northwestern adjoining property is suspected to be the source of the PCE, as concentrations generally decrease to the south across the Site with distance from the cleaners location.

- Benzene was detected in two (2) of the 30 samples with one (1) sample in excess of the residential SL, and one (1) sample in excess of both the residential and commercial SLs. The detections were in samples from locations BC6 and BC7 in the northcentral portion of the Site. Based on the lack of benzene detections at location BC1, BC8, and BC9, the Shell Service Station on the northwestern adjoining property (1200 Beryl Street) does not appear to be a potential source. Leaks from automobiles in the parking lots are a potential source of benzene.
- Chloroform was detected in four (4) of the 30 samples. The detections were in samples from locations BC4, BC9, and BC10 in the southern portion of the Site. One (1) sample exceeded the residential SL, and three (3) samples exceeded both the residential and commercial SLs. Sources of the chloroform detected are unknown, but may potential include leaky water pipes, as chloroform is a byproduct of the chlorination process used in most municipally supplied drinking water.

Methane Screening: Methane was not detected in any of the probes at concentrations greater than the background concentration of 0.1 ppmv. Significant positive pressure was also not detected in any of the probes. Therefore, the Site does not appear to be impacted as a result of being located within the Torrance Oil Field, or from the former landfill located on northeastern adjoining property (200 Flagler Lane).

Ambient Air: Based on the reported VOC concentrations in soil vapor samples, ambient air samples were collected to evaluate for potential impacts from vapor intrusion. The three (3) VOCs reported in soil vapor samples at concentrations in excess of their respective residential screening levels were reported as follows in the ambient air samples;

- PCE was reported at a maximum concentration of 0.25 ug/m³, which is less than the residential SL for indoor air of 0.46 ug/m³. All reported concentrations of PCE in indoor air samples were generally consistent with the concentration of 0.16 ug/m³ reported in the background outdoor air sample. The concentrations of PCE detected in indoor air samples are likely to be related to background levels present in the ambient air rather than from concentrations in the subsurface that may have intruded through the building foundation.
- Benzene and chloroform were detected in excess of their residential SLs for indoor air in all samples, but with one (1) exception (parking garage storage room) all indoor air samples are generally similar to the background concentrations reported in the outdoor air samples. The elevated concentration of benzene and chloroform in the sample from the parking garage storage room (520-8) are likely related to exhaust from vehicles or disinfection/cleaning products. The concentrations detected in all other indoor air samples are likely to be related to background levels

present in the ambient air rather than from concentrations in the subsurface that may have intruded through the building foundation.

All other compounds reported in indoor air samples are suspected to related to either background concentrations present in the ambient air or from sources other than vapor intrusion.

5.4 Other Concerns

5.4.1 Significant Assumptions

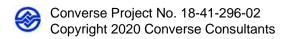
No significant assumptions were made during this assessment.

5.4.2 Limitations and Exceptions

No limitations or exceptions were encountered during this investigation.

5.4.3 Special Terms and Conditions

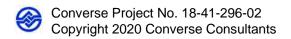
No special terms or conditions need to be noted in this *Phase II ESA* report.


5.5 Conclusions/Objectives Met

Converse has performed a *Phase II ESA* at 510, 512, 514, and 520 North Prospect Avenue, and the adjoining vacant parcel located at Flagler Lane and Beryl Street (Flagler lot) in Redondo Beach, California, in conformance with the scope and limitations of ASTM, E1903-11 and the following objectives:

- Evaluate environmental concerns in connection with the Site that were identified during a Phase I ESA conducted by Converse.
- Identify if potential target analytes are present at concentrations greater than threshold criteria.

Converse presents the following findings based on the results of this assessment:


- No analytes were reported in the soil samples at concentrations in excess of their respective screening levels.
- Methane was not detected in any of the probes at concentrations greater than the background concentration of 0.1 ppmv, and no significant positive pressure was detected in any of the probes.

- A total of 16 VOCs were detected in one or more of the 30 soil vapor samples. Only three (3) were reported at concentrations in excess of their respective screening levels; PCE, benzene, and chloroform.
 - O PCE was detected in 29 of the 30 soil-vapor samples at a maximum concentration of 2,290 ug/m³. Twenty-four (24) of the reported concentrations are greater than the residential SL of 15 ug/m³. The highest concentrations were generally detected in deeper samples from locations near the former drycleaner (BC7, BC12, BC13, BC14, and BC15).
 - Benzene was detected in two (2) samples (BC6-15 and BC7-5) at a maximum concentration of 22 ug/m³, which both exceed the residential SL of 3.2 ug/m³.
 - Chloroform was detected in four (4) samples (BC4-15, BC9-5, BC10-5, and BC10-15) at a maximum concentration of 54 ug/m³. All of these concentrations exceed the residential SL of 4.1 ug/m³.
- A total of 22 VOCs were detected in one or more of the 5 indoor air samples. Only six (6) were reported at concentrations in excess of their respective screening levels; benzene, bromodichloromethane, chloroform, ethylbenzene, 1,1,2,2-tetrachloroethane, and vinyl chloride.
 - PCE, the chemical considered to present the greatest potential vapor intrusion risk based on concentration in soil vapor samples, was reported at concentrations less than the residential screening level in all indoor air samples.
 - Three (3) of the compounds reported in indoor air samples at concentrations in excess of their residential screening levels (bromodichloromethane, 1,1,2,2-tetrachloroethane, and vinyl chloride) were only reported in a single ambient air sample, and were not detected in any of the soil vapor samples. The presence of these compounds in indoor air are not considered to be related to vapor intrusion.
 - o Benzene and chloroform were the only compounds detected in soil vapor samples and above their residential screening level in multiple ambient air samples. With the exception of the sample collected from the parking garage storage room (520-8), the concentrations of these compounds in ambient air samples were generally consistent with the concentrations reported in the background outdoor air sample, and are not considered to be related to vapor intrusion.

Based on the findings of this assessment Converse concludes the following:

 Nearly the entire Site appears to be impacted by PCE in the soil vapor at concentrations in excess of the residential SL. The former dry cleaners that

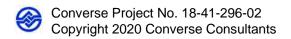
operated at the northwestern adjoining property is suspected to be the source of the PCE, as concentrations generally decrease to the south across the Site with distance from the cleaners location. These concentrations present a potential vapor intrusion risk, but based on findings from this assessment it does not appear that the Site is currently being significantly impacted by vapor intrusion.

- There is no evidence of Site impacts as a result of being located within the Torrance Oil Field, or from the former landfill located on northeastern adjoining property (200 Flagler Lane).
- There is no evidence of Site impacts from the 10,000-gallon diesel-fuel UST currently operating at the Site, or from the service station on the northwestern adjoining property (1200 Beryl Street).
- Minor impacts from benzene and chloroform were identified at the Site.
 Sources for these compounds are unknown, but may include minor leaks from automobiles in the parking lot and leaks from water lines, respectively.

6.0 Recommendations

Further assessment does not appear to be necessary to achieve the objectives of this assessment. However, based on the findings of this assessment, further action does appear to be warranted related to impacts that are likely the result of releases from historical drycleaning operations at the northwestern adjoining property. Additional actions may include one or more of the following actions: incorporate gas mitigation measures into the design of future structures, conduct remedial actions to remove contaminants from beneath the Site, communication with the adjacent property owner, and consultation with applicable regulatory agencies.

7.0 Reliance

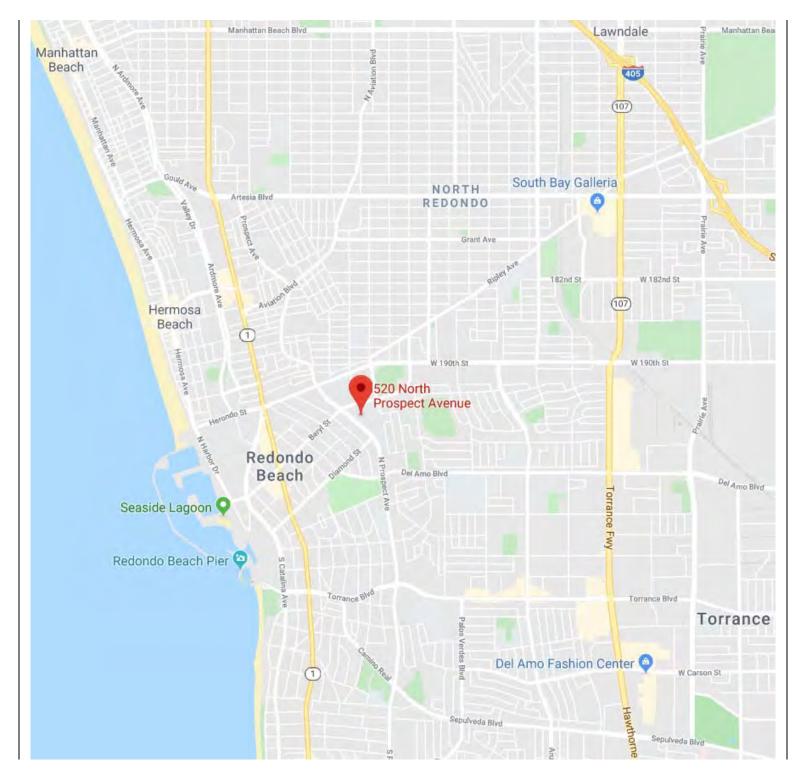

This report is for the sole benefit and exclusive use of Beach Cities Health District in accordance with the terms and conditions that are presented in our Proposal dated September 18, 2019 under which these services have been provided. The preparation of this report has been in accordance with generally accepted environmental practices. No other warranty, either express or implied, is made. This report should not be regarded as a guarantee that no further contamination beyond that which could be detected within the scope of this assessment is present at the Site.

This report should not be regarded as a guarantee that no further contamination, beyond that which could be detected within the scope of this assessment, is present at the Site. Converse makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others. It is possible that information exists beyond the scope of this assessment. It is not possible to absolutely confirm that no hazardous materials and/or substances exist at the Site. If none are identified as part of a limited scope of work, such a conclusion should not be construed as a guaranteed absence of such materials, but merely the results of the evaluation of the Site at the time of the assessment. Also, events may occur after the Site visit, which may result in contamination of the Site. Additional information, which was not found or available to Converse at the time of report preparation, may result in a modification of the conclusions and recommendations presented.

Any reliance on this report by Third Parties shall be at the Third Party's sole risk. Should Beach Cities Health District wish to identify any additional relying parties not previously identified, a completed Application of Authorization to Use (see following page) must be submitted to Converse Consultants.

Application for Authorization to Use

Converse Consultants TO: 3172 Pullman Street, Suite 108 Costa Mesa, California 92626 Project Title & Date: Project Address: FROM: (Please identify name & address of person/entity applying for permission to use the referenced report.) hereby applies for permission to use Applicant the referenced report in order to: Applicant wishes or needs to use the referenced report because: Applicant also understands and agrees that the referenced document is a copyrighted document and shall remain the sole property of Converse Consultants. Unauthorized use or copying of the report is strictly prohibited without the express written permission of Converse Consultants. Applicant understands and agrees that Converse Consultants may withhold such permission at its sole discretion, or grant such permission upon agreement to Terms and Conditions, such as the payment of a re-use fee, amongst others. Applicant Signature: Applicant Name (print): Title: Date:



8.0 References and Sources of Information

- California State Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board (RWQCB), Los Angeles Region, Advisory-Active Soil Gas Investigations, July 2015.
- Converse Consultants, Phase I Environmental Site Inspection Report, May 15, 2019.
- DTSC, Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011.
- DTSC, Human Health Risk Assessment (HHRA) Note Number 3, DTSC Modified Screening, April 2019.
- San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, August 2019.
- USEPA, Regional Screening Levels, November 2019

Figures

Figures

SITE VICINITY

1

Beach Cities Health District 510-520 North Prospect Avenue Redondo Beach, California

Project No:

18-41-296-02

FIGURE

Converse Consultants

SITE PLAN

Beach Cities Health District 510-520 North Prospect Avenue Redondo Beach, California

Project No:

18-41-296-02

FIGURE

2

Converse Consultants

SAMPLE LOCATIONS

Beach Cities Health District 510-520 North Prospect Avenue Redondo Beach, California

Project No:

18-41-296-02

FIGURE

3

Converse Consultants

Tables

Tables

Table 1 Summary of Analytical Results - Metals in Soil

Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	Sample Date						Metals (mg/kg)					
		Barium	Cadmium	Chromium (Total)	Cobalt	Copper	Mercury	Lead	Nickel	Vanadium	Zinc	All Other Metals
BC1-2	10/22/19	32.6	ND	8.8	3.0	2.7	ND	1.7	4.4	12.4	10.4	ND
BC1-30	10/22/19	10.4	ND	6.2	1.3	1.5	ND	0.7	3.7	6.0	6.7	ND
BC2-2	10/22/19	46.6	0.8	12.1	4.6	4.3	0.036	2.2	6.5	16.9	17.9	ND
BC2-5	10/22/19	28.5	0.6	11.6	3.5	3.2	ND	1.6	4.3	14.5	13.5	ND
BC3-2	10/22/19	26.3	0.6	21.5	5.1	3.7	0.058	1.8	7.6	13.8	13.1	ND
BC3-5	10/22/19	21.1	0.6	17.1	4.0	2.8	0.100	1.3	7.4	15.5	10.2	ND
BC4-2	10/22/19	28.7	0.5	16.0	2.7	2.6	0.033	1.4	7.9	12.4	11.3	ND
BC4-5	10/22/19	27.2	0.7	26.6	4.6	3.0	0.052	1.6	9.1	17.0	11.6	ND
BC5-2	10/22/19	21.2	ND	14.5	2.6	2.5	0.030	2.1	5.2	12.0	10.6	ND
BC5-5	10/22/19	27.9	0.9	22.7	4.4	3.1	0.058	2.1	8.5	21.8	14.8	ND
BC6-2	10/22/19	32.1	1.0	27.0	4.6	3.2	0.045	2.3	9.7	23.4	14.7	ND
BC6-5	10/22/19	33.6	0.6	11.6	3.6	3.6	0.072	2.1	5.4	15.2	12.1	ND
BC7-2	10/22/19	19.6	ND	11.2	2.3	2.9	0.036	2.9	6.3	12.0	11.8	ND
BC7-5	10/22/19	17.8	ND	13.7	2.3	2.3	0.041	1.2	6.6	10.4	10.1	ND
BC8-2	10/22/19	36.6	0.7	16.5	3.2	3.3	ND	2.0	5.9	15.4	12.0	ND
BC8-5	10/22/19	14.0	ND	9.6	1.6	1.7	0.046	1.0	3.6	8.9	6.7	ND
BC9-2	10/23/19	20.7	ND	15.4	3.4	2.7	0.078	1.6	4.9	12.0	31.6	ND
BC9-5	10/23/19	17.6	ND	12.3	1.8	2.3	0.093	0.9	5.0	11.3	9.8	ND
BC10-2	10/23/19	25.8	0.6	14.4	2.8	4.2	0.085	4.7	7.0	12.9	22.0	ND
BC10-5	10/23/19	20.5	0.6	17.5	3.0	2.7	0.094	1.3	8.5	13.5	11.0	ND
BC11-2	10/23/19	35.3	0.7	12.5	3.4	3.5	0.047	2.3	8.6	13.6	19.0	ND
BC11-5	10/23/19	17.6	0.7	11.8	4.2	3.9	0.029	1.9	5.3	15.1	17.5	ND
BC12-2	10/23/19	13.6	ND	8.4	2.1	2.0	0.141	1.1	3.3	9.0	7.2	ND
BC12-5	10/23/19	26.5	0.7	28.6	3.0	3.3	0.234	1.5	7.7	18.4	12.6	ND
BC13-2	10/23/19	24.6	0.5	10.3	4.1	2.8	0.043	1.4	3.9	12.5	11.0	ND
BC13-5	10/23/19	48.0	1.0	30.1	6.0	5.4	0.088	2.4	11.2	23.5	18.5	ND
BC14-2	10/23/19	35.1	0.6	11.1	3.2	4.0	0.042	7.6	6.6	14.6	23.1	ND
BC14-5	10/23/19	17.9	ND	9.9	2.4	2.0	0.076	1.3	3.5	11.1	8.0	ND
BC15-2	10/23/19	54.9	0.6	8.7	2.8	3.7	0.030	3.6	5.9	11.5	16.9	ND
BC15-5	10/23/19	27.2	0.6	14.9	3.3	2.8	0.055	1.3	5.2	13.9	10.8	ND
Screening Levels	DTSC / EPA	15,000	71	120,000	23	3,100	1.0	80	820	390	23,000	
Regulatory	TTLC	10,000	100	2,500	8,000	2,500	20	1,000	2,000	2,400	5,000	
Thresholds	STLC*	100	1	5	80	25	0.2	5	20	24	250	
	TCLP*	100	1	5			0.2	5				

mg/kg = Milligrams per Kilogram ug/kg = Micrograms per Kilogram mg/L = Milligrams per Liter ug/L = Micrograms per Liter ND = Not Detected TTLC = Total Threshold Limit Concentration
STLC = Soluble Threshold Limit Concentration
TCLP = Toxicity Characteristic Leaching Procedure
* STCL and TCLP values in units of mg/L

Converse Consultants 18-41-296-02

Table 2 Summary of Analytical Results - Non-Metals in Soil

Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	Sample Date		TPH (mg/kg)			OCPs (ug/kg)		OPPs (ug/kg)	VOCs (ug/kg)	SVOCs (ug/kg)
	, p	Gasoline	Diesel	Oil	4,4'-DDE	4,4'-DDT	All Other OCPs	All OPPs	All VOCs	All SVOCs
BC1-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC1-30	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC2-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC2-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC3-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC3-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC4-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC4-5	10/22/19	ND	ND	ND	ND	ND	ND	NA	ND	NA
BC5-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC5-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC6-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC6-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC7-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC7-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC8-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC8-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC9-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC9-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC10-2	10/23/19	ND	ND	ND	254	30.0	ND	ND	ND	NA
BC10-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC11-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC11-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC12-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC12-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC13-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC13-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC14-2	10/23/19	ND	ND	20.9	ND	ND	ND	ND	ND	NA
BC14-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC15-2	10/23/19	ND	ND	123	ND	ND	ND	ND	ND	NA
BC15-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
Screening Levels	DTSC / EPA	2,000	1,200	180,000	2,000	1,900				
Regulatory	TTLC					000				
Thresholds	STLC*					00 I				
	TCLP*									

mg/kg = Milligrams per Kilogram ug/kg = Micrograms per Kilogram mg/L = Milligrams per Liter ug/L = Micrograms per Liter ND = Not Detected TPH = Total Petroleum Hydrocarbons TT

OCPs = Organochlorine Pesticides ST

OPPs = Organophosphorus Pesticides TC

VOCs = Volatile Organic Compounds * S

SVOCs = Semi-volatile Organic Compounds

TTLC = Total Threshold Limit Concentration
STLC = Soluble Threshold Limit Concentration
TCLP = Toxicity Characteristic Leaching Procedu
* STCL and TCLP values in units of mg/L

Table 3 Summary of Soil Analycail Results - VOCs in Soil Vapor

Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	Depth (feet bgs)	Date	Benzene	Chloroform	Dichlorodifluoromethane (Freon 13)	1,1-Dichloroethene	Ethylbenzene	4-Isopropyltoluene	n-Propylbenzene	Styrene	Tetrachloroethylene (PCE)	Toluene	Trichloroethylene (TCE)	Trichlorotrifluoromethane (Freon 11)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m,p-Xylenes	o-Xylene	All Other VOCs
BC1-20	20	10/31/2019	ND	ND	68	ND	ND	ND	ND	ND	912	ND	ND	ND	14	ND	ND	ND	ND
BC 1-20	20	10/31/2019	ND	ND	66	ND	ND	ND	ND	ND	925	ND	ND	10	13	ND	ND	ND	ND
BC1-30	30	10/31/2019	ND	ND	81	ND	ND	ND	ND	ND	932	ND	ND	ND	12	ND	ND	ND	ND
BC2-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	9	46	ND	ND	ND	19	ND	ND	ND	ND
BC2-15	15	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	8	ND	ND	ND	ND
BC3-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	10	19	ND	23	13	ND
BC3-15	15	10/31/2019	ND	ND	17	ND	ND	ND	ND	ND	14	ND	ND	12	16	ND	ND	ND	ND
BC4-5	5	10/31/2019	ND	ND	16	27	22	ND	10	12	38	45	ND	ND	64	25	76	32	ND
BC4-15	15	10/31/2019	ND	8	30	ND	ND	ND	ND	ND	106	ND	ND	ND	15	ND	ND	ND	ND
BC5-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	162	ND	ND	ND	19	ND	13	9	ND
BC5-15	15	10/31/2019	ND	ND	47	ND	22	ND	ND	9	370	18	ND	ND	24	8	105	45	ND
BC6-5	5	10/31/2019	ND	ND	41	ND	ND	ND	ND	ND	651	ND	ND	ND	18	ND	14	9	ND
BC6-15	15	10/31/2019	22	ND	114	ND	26	ND	ND	11	841	76	ND	10	36	15	95	35	ND
BC7-5	5	10/31/2019	8	ND	86	ND	21	ND	ND	11	1,300	54	ND	ND	24	8	77	31	ND
BC7-15	15	10/31/2019	ND	ND	21	ND	ND	ND	ND	ND	336	ND	ND	ND	8	ND	ND	ND	ND
BC8-5	5	10/31/2019	ND	ND	24	ND	ND	ND	ND	ND	207	ND	ND	ND	ND	ND	ND	ND	ND
BC8-15	15	10/31/2019	ND	ND	23	ND	ND	76	ND	ND	211	ND	ND	ND	10	ND	ND	ND	ND
BC9-5	5	10/31/2019	ND	54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BC9-15	15	10/31/2019	ND	ND	11	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
BC10-5	5	10/31/2019	ND	27	ND	ND	ND	ND	ND	ND	27	8	ND	ND	9	ND	33	10	ND
BC10-15	15	10/31/2019	ND	26	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND
BC11-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
BC11-15	15	10/31/2019	ND	ND	37	ND	ND	ND	ND	ND	573	ND	ND	ND	ND	ND	ND	ND	ND
D040.5		40/04/0040	ND	ND	15	ND	ND	ND	ND	ND	286	ND	ND	ND	ND	ND	17	ND	ND
BC12-5	5	10/31/2019	ND	ND	14	ND	ND	ND	ND	ND	263	ND	ND	ND	ND	ND	ND	ND	ND
BC12-15	15	10/31/2019	ND	ND	54	ND	ND	ND	ND	ND	1,450	ND	ND	24	ND	ND	20	9	ND
BC13-5	5	10/31/2019	ND	ND	15	ND	ND	ND	ND	ND	441	ND	ND	ND	ND	ND	ND	ND	ND
BC13-15	15	10/31/2019	ND	ND	66	ND	ND	ND	ND	ND	1,710	ND	ND	ND	ND	ND	ND	ND	ND
BC14-5	5	10/31/2019	ND	ND	26	ND	ND	ND	ND	ND	796	ND	ND	ND	ND	ND	ND	ND	ND
BC14-15	5	10/31/2019	ND	ND	73	ND	ND	ND	ND	ND	2,290	ND	ND	ND	ND	ND	ND	ND	ND
BC15-5	5	10/31/2019	ND	ND	14	ND	ND	ND	ND	ND	406	ND	ND	ND	ND	ND	ND	ND	ND
BC15-15	15	10/31/2019	ND	ND	62	ND	ND	ND	ND	ND	1,800	ND	12	ND	ND	ND	ND	ND	ND
Maxir	num Concer	ntration	22	54	114	27	26	76	10	12	2,290	76	12	24	64	25	105	45	
Soil V Screenir		Residential	3.2	4.1	3,333	2,400	37	-	33,333	31,000	15	10,000	16	43,333	2,100	2,100	3,500	3,500	-
(ug/i		Commercial / Industrial	14	18	14,667	10,000	160	-	146,667	130,000	67	44,000	100	176,667	8,666	8,666	15,000	15,000	

all concentrations in micrograms per cubic meter (ug/m³)

Soil vapor screening levels based on published ESLs, or calculated from HHRA or RSL values using and Attenuation Factor (AF) of 0.03

ESL = RWQCB Environmental Screening Levels (August 2019)

HHRA = DTSC Human Health Risk Assessment Note 3 Screening Levels (April 2019)

RSL = EPA Regional Screening Level (November 2019)

ND = Not detected

bgs = below ground surface

Table 4 Methane Screening Results

Beach Cities Health District

510-520 N. Prospect Avenue Redondo Beach, California

Boring	Depth		Differential	Methane	Carbon	Oxygen	Hydrogen	Carbon	Balance	Barometric
ID	(feet)	Date	Pressure	(ppmv)	Dioxide	(%)	Sulfide	Monoxide	(%)	Pressure
i D	(ICCI)		(inches H ₂ O)	(ppiliv)	(%)	(70)	(ppmv)	(ppmv)	(70)	(inches Hg)
	20	10/28/2019	NA	0.1	3.7	16.1	0.0	0.0	80.1	29.74
BC1	20	10/30/2019	-0.10	0.1	3.7	16.0	0.0	0.0	80.2	29.81
20.	30	10/28/2019	NA	0.1	3.9	15.8	0.0	0.0	80.2	29.74
		10/30/2019	-0.14	0.1	3.9	15.7	0.0	0.0	80.3	29.81
	5	10/28/2019	NA 0.03	0.1	6.5	13.9	0.0	0.0	79.5	29.67
BC2		10/30/2019 10/28/2019	-0.03 NA	0.1	6.5 6.8	14.2 13.1	0.0	0.0	79.2 80.0	29.79 29.67
	15	10/30/2019	-0.12	0.1	6.8	13.3	0.0	0.0	79.8	29.79
		10/28/2019	NA	0.1	2.3	17.8	0.0	0.0	79.8	29.71
	5	10/30/2019	0.00	0.1	1.4	18.9	0.0	0.0	79.6	29.83
BC3	45	10/28/2019	NA	0.1	1.5	18.3	0.0	0.0	80.1	29.71
	15	10/30/2019	-0.06	0.1	1.5	18.8	0.0	0.0	79.7	29.83
	5	10/28/2019	NA	0.1	1.3	18.8	0.0	0.0	79.8	29.70
BC4	5	10/30/2019	0.01	0.1	1.3	19.1	0.0	0.0	79.6	29.84
DC4	15	10/28/2019	NA	0.1	0.7	19.4	0.0	0.0	79.8	29.70
	10	10/30/2019	-0.09	0.1	0.7	19.5	0.0	0.0	79.7	29.84
	5	10/28/2019	NA	0.1	3.1	18.2	0.0	0.0	78.6	29.72
BC5		10/30/2019	0.00	0.1	3.0	17.8	0.0	0.0	79.1	29.86
	15	10/28/2019	NA	0.1	1.9	18.8	0.0	0.0	79.2	29.72
		10/30/2019	0.00	0.1	1.9	18.9	0.0	0.0	79.1	29.86
	5	10/28/2019	NA 0.04	0.1	1.5	18.9	0.0	0.0	79.5	29.73
BC6		10/30/2019 10/28/2019	-0.01 NA	0.1 0.1	1.5 2.0	18.9 18.1	0.0	0.0	79.5 79.8	29.90 29.73
	15	10/20/2019	0.01	0.1	1.9	18.0	0.0	0.0	80.0	29.73
		10/30/2019	NA	0.1	3.0	18.0	0.0	0.0	78.9	29.73
	5	10/30/2019	-0.02	0.0	3.0	18.4	0.0	0.0	78.6	29.93
BC7		10/28/2019	NA	0.1	6.3	14.6	0.0	0.0	79.0	29.73
	15	10/30/2019	-0.09	0.0	6.6	14.7	0.0	0.0	78.7	29.93
	_	10/28/2019	NA	0.1	3.6	16.6	0.0	0.0	79.7	29.75
D00	5	10/30/2019	-0.03	0.1	3.4	17.2	0.0	0.0	79.3	29.94
BC8	15	10/28/2019	NA	0.1	3.7	16.4	0.0	0.0	79.8	29.75
	15	10/30/2019	-0.05	0.1	3.7	16.8	0.0	0.0	79.4	29.94
	5	10/28/2019	NA	0.1	0.9	18.9	0.0	0.0	80.0	29.75
BC9		10/30/2019	0.01	0.1	0.9	19.8	0.0	0.0	79.2	29.94
1 500	15	10/28/2019	NA	0.1	1.9	18.6	0.0	0.0	79.4	29.75
		10/30/2019	0.70	0.1	1.9	19.1	0.0	0.0	79.0	29.94
	5	10/28/2019	NA 2.24	0.1	1.3	19.5	0.0	0.0	79.1	29.75
BC10		10/30/2019	0.01	0.1	1.0	20.5	0.0	0.0	78.4	29.93
	15	10/28/2019	NA 0.04	0.1	2.0	19.0	0.0	0.0	78.9	29.75
		10/30/2019	-0.04 NA	0.0	2.0 0.5	19.5 19.8	0.0	0.0	78.4 79.5	29.93 29.75
	5	10/28/2019 10/30/2019	0.01	0.1 0.1	0.5	19.6	0.0	0.0	80.2	29.75
BC11		10/28/2019	NA	0.1	4.3	16.2	0.0	0.0	79.4	29.75
	15	10/30/2019	-0.06	0.1	4.5	15.7	0.0	0.0	79.7	29.75
		10/28/2019	NA	0.1	1.1	19.3	0.0	0.0	79.5	29.78
2010	5	10/30/2019	0.02	0.1	1.0	18.9	0.0	0.0	80.0	29.78
BC12	45	10/28/2019	NA	0.1	4.4	15.8	0.0	0.0	79.8	29.78
	15	10/30/2019	-0.08	0.1	4.6	15.4	0.0	0.0	79.9	29.78
	5	10/28/2019	NA	0.1	1.0	19.6	0.0	0.0	79.3	29.80
BC13	5	10/30/2019	0.01	0.1	1.0	19.2	0.0	0.0	79.7	29.80
DC 13	15	10/28/2019	NA	0.1	3.6	16.7	0.0	0.0	79.6	29.80
	10	10/30/2019	-0.11	0.1	3.7	16.4	0.0	0.0	79.9	29.80
	5	10/28/2019	NA	0.1	1.6	19.1	0.0	0.0	79.2	29.80
BC14	,	10/30/2019	-0.08	0.1	1.6	18.9	0.0	0.0	79.4	29.80
_017	15	10/28/2019	NA	0.1	3.6	16.8	0.0	0.0	79.5	29.80
	-	10/30/2019	-0.14	0.1	3.8	16.6	0.0	0.0	79.5	29.80
	5	10/28/2019	NA 0.04	0.1	2.3	18.5	0.0	0.0	79.1	29.80
BC15		10/30/2019	0.01	0.1	2.2	18.8	0.0	0.0	79.0	29.81
	15	10/28/2019	NA 0.12	0.1	4.8	15.8	0.0	0.0	79.4	29.80
		10/30/2019	-0.12	0.0	4.8	15.6	0.0	0.0	79.4	29.81

Table 5 Summary of Analytical Results VOCs in Indoor/Outdoor Air

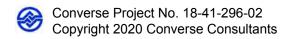
Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	K122301-0I (510-129)	K122301-02 (520-8) Parking Garage	KI22301-05 (514-SF-1) Equipment	K122301-06 (514-AH-10) Equipment	K122301-03 (CP-Office) Central Plant	K122301-04 (Ambient)	- Maximum Screen		or Air ng Levels
Location Description	Vacant Room	Storage Room	Room	Room	Office	Background	Concentration (ug/m³)	(ug	/m ³)
Sample Date	11/21/2019	11/21/2019	11/21/2019	11/21/2019	11/21/2019	11/21/2019	(9,)	Residential	Commercial
Tetrachloroethene (PCE)	0.22	0.21	0.16	0.25	0.17	0.16	0.25	0.46	2.0
Trichloroethene (TCE)	ND	0.07	ND	ND	0.056	ND	0.07	0.48	3.0
1,1,2,2-Tetrachloroethane	ND	ND	ND	0.15	ND	ND	0.15	0.048	0.21
1,2-Dichloroethane	0.074	0.079	0.077	0.078	0.1	0.075	0.10	0.11	0.47
t-1,2-Dichloroethene	ND	0.055	ND	ND	0.041	ND	0.06	83	350
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	0.00	0.28	1.2
Benzene	1.5	7.0	1.4	1.3	1.3	1.3	7.00	0.097	0.42
Bromodichloromethane	0.14	ND	ND	ND	ND	ND	0.14	0.076	0.33
Carbon Tetrachloride	0.46	0.47	0.46	0.44	0.44	0.45	0.47	0.47	2.0
Chloroethane	0.031	0.18	0.14	0.17	0.19	0.04	0.19	10,000	44,000
Chloromethane	1.0	1.4	1.0	1.0	1.0	1.0	1.40	94	390
Chloroform	0.42	2.6	0.17	0.35	0.15	0.18	2.60	0.12	0.53
Ethylbenzene	0.72	1.4	0.65	0.61	0.69	0.59	1.40	1.1	4.9
Dichlorodifluoromethane (Freon 12)	2.1	2.1	2.1	2.0	2.1	2.0	2.10	100	440
Trichlorotrifluoroethane (Freon 113)	0.50	0.50	0.50	0.48	0.48	0.48	0.50	5,200	10,000
Methylene Chloride	0.56	0.69	0.58	0.59	0.58	0.72	0.72	1	12
o-Xylene	0.95	1.7	0.85	0.79	0.97	0.78	1.70	100	440
p,m-Xylene	2.5	4.0	2.2	2.2	2.5	2.0	4.00	100	440
Styrene	0.33	1.3	0.32	0.27	0.3	0.31	1.30	3,900	3,900
Toluene	4.6	6.8	4.1	3.8	4.4	3.7	6.80	310	1,300
Trichlorofluoromethane (II)	1.2	1.2	1.2	1.2	1.2	1.2	1.20	1,300	5,300
Vinyl Chloride	ND	ND	ND	0.013	ND	ND	0.01	0.0095	0.16

Screening levels based on RWQCB Environmental Screening Levels (ESLs), DTSC HHRA Note 3, or EPA Regional Screening levels (RSLs) All concentrations in micrograms per cubic meter (ug/m ³)

ND - Not Detected Above Method Detection Limit (MDL)

-- Denotes No Screening Level


Converse Project No. 18-41-296-02

Application for Authorization to Use

Appendix A

Application for Authorization to Use

TO: **Converse Consultants** 3172 Pullman Street, Suite 108 Costa Mesa, California 92626 Project Title & Date: Project Address: FROM: (Please identify name & address of person/entity applying for permission to use the referenced report.) hereby applies for permission to use Applicant the referenced report in order to: Applicant wishes or needs to use the referenced report because: Applicant also understands and agrees that the referenced document is a copyrighted document and shall remain the sole property of Converse Consultants. Unauthorized use or copying of the report is strictly prohibited without the express written permission of Converse Consultants. Applicant understands and agrees that Converse Consultants may withhold such permission at its sole discretion, or grant such permission upon agreement to Terms and Conditions, such as the payment of a re-use fee, amongst others. Applicant Signature: Applicant Name (print): Title: Date:

Analytical Reports

Appendix B

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: F-0345

Thent Address: 717 S. Wytuc Ave Jones Ref. No.: 17-0343

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

 Project:
 BCHD

 Date Received:
 10/31/2019

 Date Analyzed:
 10/31/2019

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

ANALYSES REQUESTED

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of collection.

Approval:

Steve Jones, Ph.D. Laboratory Manager

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-11-5'	BC-11-15'	BC-12-5'	BC-12-5' REP	BC-12-15'		
Jones ID:	F-0345-01	F-0345-02	F-0345-03	F-0345-04	F-0345-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	37	15	14	54	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics BC-12-5' BC-11-5' BC-11-15' BC-12-5' BC-12-15' Sample ID: REP Jones ID: F-0345-01 F-0345-02 F-0345-03 F-0345-04 F-0345-05 **Reporting Limit Units Analytes:** ND ND ND ND ND 8 cis-1,3-Dichloropropene $\mu g/m3$ 8 trans-1,3-Dichloropropene ND ND ND ND ND $\mu g/m3$ Ethylbenzene ND ND ND ND ND 8 $\mu g/m3$ 16 Freon 113 ND ND ND ND ND $\mu g/m3$ Hexachlorobutadiene ND ND ND ND ND 24 $\mu g/m3$ 8 Isopropylbenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 $\mu g/m3$ 4-Isopropyltoluene ND ND ND 8 Methylene chloride ND ND ND ND ND $\mu g/m3$ $\mu g/m3$ ND ND ND ND ND 40 Naphthalene 8 n-Propylbenzene ND ND ND ND ND $\mu g/m3$ Styrene ND ND ND ND ND 8 $\mu g/m3$ ND ND ND ND ND 8 1,1,1,2-Tetrachloroethane $\mu g/m3$ 1,1,2,2-Tetrachloroethane ND ND ND ND ND 16 $\mu g/m3$ Tetrachloroethene 10 573 286 263 1450 8 $\mu g/m3$ 8 ND ND Toluene ND ND ND $\mu g/m3$ 1.2.3-Trichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,2,4-Trichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ $\mu g/m3$ 1,1,1-Trichloroethane ND ND ND ND ND 8 8 1,1,2-Trichloroethane ND ND ND ND ND $\mu g/m3$ Trichloroethene ND ND ND ND ND 8 $\mu g/m3$ Trichlorofluoromethane ND 16 ND ND ND 24 $\mu g/m3$ 1.2.3-Trichloropropane ND ND ND ND ND 8 $\mu g/m3$ ND ND ND ND ND 8 1,2,4-Trimethylbenzene $\mu g/m3$ 8 1,3,5-Trimethylbenzene ND ND ND ND ND $\mu g/m3$ Vinyl chloride ND ND ND ND ND 8 $\mu g/m3$ ND 16 m,p-Xylene ND 17 ND **20** $\mu g/m3$ o-Xylene ND ND ND ND 9 8 $\mu g/m3$ **MTBE** ND ND ND ND ND 40 $\mu g/m3$ 40 Ethyl-tert-butylether ND ND ND ND ND $\mu g/m3$ 40 Di-isopropylether ND ND ND ND ND $\mu g/m3$ ND ND ND ND ND 40 $\mu g/m3$ tert-amylmethylether ND ND tert-Butylalcohol ND ND ND 400 $\mu g/m3$ Gasoline Range Organics (C4-C12) ND ND ND ND ND 2000 $\mu g/m3$ Tracer: ND ND ND ND ND 80 n-Pentane $\mu g/m3$ ND ND ND ND ND 80 n-Hexane $\mu g/m3$ ND ND ND ND ND 80 $\mu g/m3$ n-Heptane **Dilution Factor** 1 1 1 1 1 **QC** Limits **Surrogate Recoveries:** 60 - 140 Dibromofluoromethane 102% 108% 103% 104% 104% Toluene-d₈ 103% 102% 101% 99% 100% 60 - 1404-Bromofluorobenzene 87% 90% 88% 91% 85% 60 - 140

ND = Value below reporting limit

Batch ID:

F1-103119-

01

F1-103119-

01

F1-103119-

01

F1-103119-

01

F1-103119-

01

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

BC-14-15'

F-0345-09

BC-15-5'

F-0345-10

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

8

8

8

8

8

8

16

10

 $\mu g/m3$

 $\mu g/m3$

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvenuePhysical State:Soil Gas

Redondo Beach, CA

BC-13-15'

F-0345-07

BC-13-5'

F-0345-06

ND

Sample ID:

Jones ID:

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

trans-1,2-Dichloroethene

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC-14-5'

F-0345-08

Reporting Limit Units Analytes: Benzene ND ND ND ND ND 8 $\mu g/m3$ 8 ND ND ND ND ND Bromobenzene $\mu g/m3$ 8 Bromodichloromethane ND ND ND ND ND $\mu g/m3$ Bromoform ND ND ND ND ND 8 $\mu g/m3$ 12 n-Butylbenzene ND ND ND ND ND $\mu g/m3$ sec-Butylbenzene ND ND ND ND ND 12 $\mu g/m3$ tert-Butylbenzene 12 ND ND ND ND ND $\mu g/m3$ Carbon tetrachloride ND ND ND ND ND 8 $\mu g/m3$ 8 Chlorobenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 Chloroform ND ND ND $\mu g/m3$ 2-Chlorotoluene ND ND ND ND ND 12 $\mu g/m3$ ND ND 12 4-Chlorotoluene ND ND ND $\mu g/m3$ 8 Dibromochloromethane ND ND ND ND ND $\mu g/m3$ 8 1,2-Dibromo-3-chloropropane ND ND ND ND ND $\mu g/m3$ 1,2-Dibromoethane (EDB) ND ND ND ND ND 8 $\mu g/m3$ 8 Dibromomethane ND ND ND ND ND $\mu g/m3$ 1,2- Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,3-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,4-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 8 Dichlorodifluoromethane 15 66 26 73 14 $\mu g/m3$ 8 1,1-Dichloroethane ND ND ND ND ND $\mu g/m3$

ND

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-13-5'	BC-13-15'	BC-14-5'	BC-14-15'	BC-15-5'		
Jones ID:	F-0345-06	F-0345-07	F-0345-08	F-0345-09	F-0345-10	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
Tetrachloroethene	441	1710	796	2290	406	8	$\mu g/m3$
Toluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	$\mu g/m3$
MTBE	ND	ND	ND	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	ND	ND	ND	400	$\mu g/m3$
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
Dibromofluoromethane	106%	104%	105%	104%	107%	60 - 140	
Toluene-d ₈	99%	100%	101%	100%	99%	60 - 140	
4-Bromofluorobenzene	88%	92%	88%	88%	90%	60 - 140	
Batch ID:	F1-103119- 01	F1-103119- 01	F1-103119- 01	F1-103119- 01	F1-103119- 01		

ND = Value below reporting limit

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

BC-9-5'

BC-9-15'

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019

Project: Project: BCHD Date Analyzed: 10/31/2019

Physical States Soil Cos

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

BC-10-5'

BC-15-15'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC-10-15'

							
Jones ID:	F-0345-11	F-0345-12	F-0345-13	F-0345-14	F-0345-15	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	27	26	54	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	62	ND	ND	ND	11	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-15-15'	BC-10-5'	BC-10-15'	BC-9-5'	BC-9-15'		
Jones ID:	F-0345-11	F-0345-12	F-0345-13	F-0345-14	F-0345-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
Tetrachloroethene	1800	27	11	ND	10	8	$\mu g/m3$
Toluene	ND	8	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichloroethene	12	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2,4-Trimethylbenzene	ND	9	ND	ND	ND	8	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Vinyl chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
m,p-Xylene	ND	33	ND	ND	ND	16	$\mu g/m3$
o-Xylene	ND	10	ND	ND	ND	8	$\mu g/m3$
MTBE	ND	ND	ND	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>:s</u>
Dibromofluoromethane	104%	102%	101%	102%	104%	60 - 140	
Toluene-d ₈	101%	101%	108%	102%	100%	60 - 140	
4-Bromofluorobenzene	85%	83%	88%	86%	84%	60 - 140	
	F1-103119-	F1-103119-	F1-103119-	F1-103119-	F1-103119-		
Batch ID:	01	01	01	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC-8-5' BC-8-15'

Jones ID:	F-0345-16	F-0345-17	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	μg/m3
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	μg/m3
Dibromomethane	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	24	23	8	μg/m3
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-8-5'	BC-8-15'

Cisi 2-Dichloropropene ND ND ND RS µg/m3 Rash-1,3-Dichloropropene ND ND ND RS µg/m3 Rash-1,3-Dichloropropene ND ND RS µg/m3 Resemblorobutadene ND ND RS	Jones ID:	F-0345-16	F-0345-17	Reporting Limit	<u>Units</u>
Early September ND	Analytes:				
Buthythenzene	cis-1,3-Dichloropropene	ND	ND	8	μg/m3
Bully blenzene	trans-1,3-Dichloropropene	ND	ND	8	μg/m3
Freen 13	Ethylbenzene	ND	ND		
Hexachlorobutadiene	Freon 113	ND	ND		
Sopropylenzene	Hexachlorobutadiene	ND	ND		
A-tsopropylotluene	Isopropylbenzene	ND	ND		
Methylene chloride ND ND 40 µg/m3 Naphthalene ND ND 40 µg/m3 Naphthalene ND ND 8 µg/m3 Styrene ND ND 8 µg/m3 Styrene ND ND 8 µg/m3 1,1,2-2-Tetrachlorocthane ND ND 16 µg/m3 1,1,2-2-Tetrachlorocthane ND ND 8 µg/m3 1ctrachlorocthane ND ND 8 µg/m3 1ctrachlorochane ND ND 16 µg/m3 1,2,3-Trichlorochane ND ND 16 µg/m3 1,2,3-Trichlorochane ND ND 8 µg/m3 1,1,1-Trichlorochane ND ND 8 µg/m3 1,1,2-Trichlorochane ND ND 8 µg/m3 Trichlorofluoromethane ND ND 8 µg/m3 Trichlorochane ND ND 8 µg/m3		ND	76		
Naphthalene ND ND 40 µg/m3 n-Propylbenzene ND ND ND Mg/m3 Styrene ND ND ND Mg/m3 1,1,2-2-tertachlorocthane ND ND ND Mg/m3 1,1,2-2-tertachlorocthane ND ND ND Mg/m3 Tetrachlorocthane ND ND ND Mg/m3 1,2,3-Trichlorobenzene ND ND MB 16 µg/m3 1,2,4-Trichlorocthane ND ND MB 16 µg/m3 1,2,4-Trichlorocthane ND ND ND MB µg/m3 1,1,2-Trichlorocthane ND ND ND ND 12,3-Trichlorocthane ND ND ND 12,3-Trichlorocthan		ND			
n-Propylbenzene ND ND ND 8 µg/m3 Styrene ND ND ND 8 µg/m3 Styrene ND ND ND 8 µg/m3 1,1,2,2-Tetrachloroethane ND ND ND 16 µg/m3 1,1,2,2-Tetrachloroethane ND ND ND 16 µg/m3 Tetrachloroethane ND ND ND 8 µg/m3 1,1,2,3-Trichlorobenzene ND ND ND 16 µg/m3 1,2,3-Trichlorobenzene ND ND ND 16 µg/m3 1,1,1-Trichloroethane ND ND ND 8 µg/m3 1,1,1-Trichloroethane ND ND ND 8 µg/m3 1,1,2-Trichloroethane ND ND ND 8 µg/m3 1,1,2-Trichloroethane ND ND ND 8 µg/m3 1,1,2-Trichloroethane ND ND ND 8 µg/m3 1,1,2-Trichloropenzene ND ND ND 8 µg/m3 1,2,3-Trichloropenzene ND ND ND 8 µg/m3 1,2,3-Trichloropenzene ND ND ND 8 µg/m3 1,2,3-Trichloropenzene ND ND ND 8 µg/m3 1,3,5-Trimethylbenzene ND ND ND 9 µg/m3 1,3,5-Trimethylbenzene ND ND 9 µg/m3 1,3,5-Trimethylbenzene ND ND 9 µg/m3 1,3,5-	·				
Syrene ND ND ND R					
1,1,2-Tetrachlorocthane	- ·				
1,1,2,2-Tetrachloroethane					
Tetrachloroethene 207 211 8 µg/m3 Toluene ND ND 16 µg/m3 1,2,3-Trichlorobenzene ND ND 16 µg/m3 1,2,4-Trichlorobenzene ND ND 16 µg/m3 1,1,1-Trichloroethane ND ND 8 µg/m3 1,1,1-Trichloroethane ND ND 8 µg/m3 Trichloroethane ND ND 8 µg/m3 Trichlorofluoromethane ND ND 16 µg/m3 1,2,3-Trichloropropane ND ND 8 µg/m3 1,2,3-Trimethylbenzene ND ND 8 µg/m3 1,2,4-Trimethylbenzene ND ND 8 µg/m3 1,3-S-Trimethylbenzene ND ND					
Toluene ND ND ND 16 μg/m3 1,2,3-Trichlorobenzene ND ND ND 16 μg/m3 1,1,1-Trichlorobenzene ND ND ND 18 μg/m3 1,1,1-Trichloroethane ND ND ND 8 μg/m3 1,1,2-Trichloroethane ND ND ND 8 μg/m3 1,1,2-Trichloroethane ND ND ND ND ND ND ND N					
1,2,3-Trichlorobenzene					
1,2,4-Trichlorobenzene					
1,1,1-Trichloroethane					
1,1,2-Trichloroethane					
Trichloroethene ND ND ND 16 µg/m3 1,2,3-Trichlorofluoromethane ND ND ND 16 µg/m3 1,2,3-Trichloropropane ND ND ND 8 µg/m3 1,2,4-Trimethylbenzene ND ND ND 8 µg/m3 1,3,5-Trimethylbenzene ND ND ND 8 µg/m3 1,3,5-Trimethylbenzene ND ND ND 8 µg/m3 ND,-Xylene ND ND ND 16 µg/m3 ND,-Xylene ND ND ND 8 µg/m3 ND,-Xylene ND ND ND 8 µg/m3 ND,-Xylene ND ND ND 40 µg/m3 ND,-Ethyl-tert-butylether ND ND ND ND ND ND ND N	, ,				
Trichlorofluoromethane ND ND ND 10 12,3-1 Trichloropropane ND ND ND 8 µg/m3 1,2,4-1 Trimethylbenzene ND ND ND 8 µg/m3 1,3,5-1 Trimethylbenzene ND ND ND 8 µg/m3 Ninyl chloride ND ND ND 16 µg/m3 Nzylene ND ND ND 16 µg/m3 Nzylene ND ND ND 8 µg/m3 Nzylene ND ND ND 8 µg/m3 Nzylene ND ND ND 40 µg/m3 Nzylene ND ND ND 40 µg/m3 Nzylene ND ND ND 40 µg/m3 Nzylene ND ND ND ND ND ND ND N					
1,2,3-Trichloropropane					
1,2,4-Trimethylbenzene					
ND					
Vinyl chloride ND ND ND mp-ryms m.p-Xylene ND ND 16 µg/m3 o-Xylene ND ND ND MTBE ND ND MO µg/m3 MTBE ND ND ND 40 µg/m3 Ethyl-tert-butylether ND ND ND µg/m3 tert-amylmethylether ND ND ND µg/m3 tert-amylmethylether ND ND ND µg/m3 tert-Butylalcohol ND ND ND µg/m3 m3 m3 m3 Tert-Butylalcohol ND ND ND µg/m3 m3					
m,p-Xylene ND ND ND 16 µg/m3 o-Xylene ND ND 8 µg/m3 MTBE ND ND 40 µg/m3 Ethyl-tert-butylether ND ND 40 µg/m3 Di-isopropylether ND ND 40 µg/m3 tert-amylmethylether ND ND 40 µg/m3 tert-Butylalcohol ND ND 40 µg/m3 Gasoline Range Organics (C4-C12) ND ND 2000 µg/m3 Tracer: n-Pentane ND ND 80 µg/m3 n-Heyane ND ND 80 µg/m3 n-Heytane ND ND 80 µg/m3 n-Heytane ND ND 80 µg/m3 n-Heytane ND ND 80 µg/m3 pilution Factor 1 1 1 Surrogate Recoveries: OC Limits Dibromofluorometha	•				
o-Xylene ND ND ND Mg/m3 MTBE ND ND ND μg/m3 Ethyl-tert-butylether ND ND 40 μg/m3 Di-isopropylether ND ND 40 μg/m3 tert-amylmethylether ND ND 40 μg/m3 tert-Butylalcohol ND ND ND μg/m3 Gasoline Range Organics (C4-C12) ND ND ND μg/m3 n-Pentane ND ND ND nB μg/m3 n-Hexane ND ND ND NB μg/m3 n-Heptane ND ND NB 0 μg/m3 Dilution Factor 1 1 1 1 Surrogate Recoveries: Dibr	•				
MTBE ND ND 40 μg/m3 Ethyl-tert-butylether ND ND 40 μg/m3 Di-isopropylether ND ND 40 μg/m3 tert-amylmethylether ND ND 40 μg/m3 tert-Butylalcohol ND ND 400 μg/m3 Gasoline Range Organics (C4-C12) ND ND ND μg/m3 Tracer: n-Pentane ND ND 80 μg/m3 n-Hexane ND ND 80 μg/m3 n-Heptane ND ND 80 μg/m3 n-Heptane ND ND 80 μg/m3 Dilution Factor 1 1 1 Surrogate Recoveries: OC Limits Dibutonofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140					
Ethyl-tert-butylether ND ND 40 µg/m3 Di-isopropylether ND ND 40 µg/m3 tert-amylmethylether ND ND 40 µg/m3 tert-Butylalcohol ND ND 400 µg/m3 Gasoline Range Organics (C4-C12) ND ND ND µg/m3 Tracer: n-Pentane ND ND 80 µg/m3 n-Hexane ND ND 80 µg/m3 n-Heptane ND ND 80 µg/m3 Dilution Factor 1 1 1 Surrogate Recoveries: OC Limits Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140					
Di-isopropylether ND ND 40 μg/m3 tert-amylmethylether ND ND Ad0 μg/m3 tert-Butylalcohol ND ND ND μg/m3 tert-Butylalcohol ND ND ND μg/m3 day MD μg/m3 day MD MD μg/m3 day MD MD <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
tert-amylmethylether tert-Butylalcohol ND ND 40 μg/m3 tert-Butylalcohol ND ND μg/m3 d400 μg/m3 d4000 μg/m3 d400 μg/m3 d4000 μg/	•				
tert-Butylalcohol ND ND 400 μg/m3 Gasoline Range Organics (C4-C12) ND ND 2000 μg/m3 Tracer: n-Pentane ND ND 80 μg/m3 n-Hexane ND ND 80 μg/m3 n-Heptane ND ND 80 μg/m3 Dilution Factor 1 1 1 1 Surrogate Recoveries: OC Limits 60 - 140 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140					
Gasoline Range Organics (C4-C12) ND ND 2000 μg/m3 Tracer: n-Pentane ND ND 80 μg/m3 n-Hexane ND ND 80 μg/m3 n-Heptane ND ND 80 μg/m3 Dilution Factor 1 1 1 Surrogate Recoveries: Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140					
Tracer: n-Pentane ND ND 80 μg/m3 n-Hexane ND ND 80 μg/m3 n-Heptane ND ND 80 μg/m3 Dilution Factor 1 1 1 Surrogate Recoveries: Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140 Ratch ID: F1-103119- F1-103119-	tert-Butylaiconor	ND	ND	400	μg/1113
n-Pentane ND ND 80 μg/m3 n-Hexane ND ND 80 μg/m3 n-Heptane ND ND 80 μg/m3 Dilution Factor 1 1 Surrogate Recoveries: Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140	Gasoline Range Organics (C4-C12)	ND	ND	2000	μg/m3
n-Hexane n-Heptane ND ND ND ND 80 80 μg/m3 μg/m3 Dilution Factor 1 1 Surrogate Recoveries: Dibromofluoromethane Toluene-ds 4-Bromofluorobenzene 104% 103% 101% 101% 4-Bromofluorobenzene 103% 80% 90% 60 - 140 60 - 140 Ratch ID: F1-103119- F1-103119- F1-103119- F1-103119-	Tracer:				
n-Heptane ND ND ND Dilution Factor	n-Pentane				
Dilution Factor 1 1 Surrogate Recoveries: QC Limits Dibromofluoromethane 104% 103% Toluene-ds 100% 101% 4-Bromofluorobenzene 80% 90% F1-103119- F1-103119-	n-Hexane	ND	ND	80	$\mu g/m3$
Surrogate Recoveries: QC Limits Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140 Batch ID: F1-103119- F1-103119-	n-Heptane	ND	ND	80	μg/m3
Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140 F1-103119- F1-103119-	Dilution Factor	1	1		
Dibromofluoromethane 104% 103% 60 - 140 Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140 F1-103119- F1-103119-	Surrogate Recoveries:			QC Limits	
Toluene-ds 100% 101% 60 - 140 4-Bromofluorobenzene 80% 90% 60 - 140 Batch ID: F1-103119- F1-103119-		104%	103%		
F1-103119- F1-103119-	Toluene-d ₈	100%	101%	60 - 140	
Ratch III)·	4-Bromofluorobenzene	80%	90%	60 - 140	
Ratch III)·	D. A. I. ID.	F1-103119-	F1-103119-		
	Daten ID:	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	103119- F1MB1	103119- F1SB1	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	103119- F1MB1	103119- F1SB1	Reporting Limit U	nits
Analytes:				
cis-1,3-Dichloropropene	ND	ND		g/m3
trans-1,3-Dichloropropene	ND	ND	8 μg	g/m3
Ethylbenzene	ND	ND	8 μg	g/m3
Freon 113	ND	ND	16 μg	g/m3
Hexachlorobutadiene	ND	ND	24 μg	g/m3
Isopropylbenzene	ND	ND	8 μg	g/m3
4-Isopropyltoluene	ND	ND	8 μg	g/m3
Methylene chloride	ND	ND	8 μg	g/m3
Naphthalene	ND	ND	40 μg	g/m3
n-Propylbenzene	ND	ND	8 μg	g/m3
Styrene	ND	ND	8 μg	g/m3
1,1,1,2-Tetrachloroethane	ND	ND	8 μg	g/m3
1,1,2,2-Tetrachloroethane	ND	ND	16 μg	g/m3
Tetrachloroethene	ND	ND	8 μg	g/m3
Toluene	ND	ND	8 μg	g/m3
1,2,3-Trichlorobenzene	ND	ND		g/m3
1,2,4-Trichlorobenzene	ND	ND	16 μg	g/m3
1,1,1-Trichloroethane	ND	ND		g/m3
1,1,2-Trichloroethane	ND	ND		g/m3
Trichloroethene	ND	ND	8 μg	g/m3
Trichlorofluoromethane	ND	ND	16 μg	g/m3
1,2,3-Trichloropropane	ND	ND		g/m3
1,2,4-Trimethylbenzene	ND	ND	8 μg	g/m3
1,3,5-Trimethylbenzene	ND	ND		g/m3
Vinyl chloride	ND	ND		g/m3
m,p-Xylene	ND	ND	16 μg	g/m3
o-Xylene	ND	ND		g/m3
MTBE	ND	ND	40 μg	g/m3
Ethyl-tert-butylether	ND	ND		g/m3
Di-isopropylether	ND	ND	40 μg	g/m3
tert-amylmethylether	ND	ND	40 μg	g/m3
tert-Butylalcohol	ND	ND	400 μg	g/m3
Gasoline Range Organics (C4-C12)	ND	ND	2000 μg	g/m3
Tracer:				
n-Pentane	ND	ND	80 μg	g/m3
n-Hexane	ND	ND	80 μg	g/m3
n-Heptane	ND	ND	80 µg	g/m3
Dilution Factor	1	1		
Surrogate Recoveries:			QC Limits	
Dibromofluoromethane	102%	102%	60 - 140	
Toluene-d ₈	99%	101%	60 - 140	
4-Bromofluorobenzene	85%	92%	60 - 140	
Datah ID.	F1-103119-	F1-103119-		
Batch ID:	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet **Date Sampled:** 10/31/2019

BCHD Date Received: 10/31/2019
BCHD Date Analyzed: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019
Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Batch ID: F1-103119-01

Jones ID:	103119-F1LCS1	103119-F1LCSD1		10)3119-F1CC	V1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	92%	91%	0.9%	60 - 140	96%	80 - 120
1,1-Dichloroethene	102%	97%	4.4%	60 - 140	98%	80 - 120
Cis-1,2-Dichloroethene	107%	114%	5.8%	70 - 130	104%	80 - 120
1,1,1-Trichloroethane	101%	102%	1.6%	70 - 130	99%	80 - 120
Benzene	114%	118%	3.8%	70 - 130	106%	80 - 120
Trichloroethene	110%	112%	1.8%	70 - 130	104%	80 - 120
Toluene	125%	127%	1.6%	70 - 130	110%	80 - 120
Tetrachloroethene	132%	129%	2.5%	70 - 130	119%	80 - 120
Chlorobenzene	114%	113%	0.4%	70 - 130	107%	80 - 120
Ethylbenzene	107%	102%	4.2%	70 - 130	104%	80 - 120
1,2,4 Trimethylbenzene	94%	87%	7.1%	70 - 130	97%	80 - 120
Gasoline Range Organics (C4-C12)	110%	109%	1.0%	70 - 130	104%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	101%	102%		60 - 140	100%	60 - 140
Toluene-d ₈	99%	100%		60 - 140	98%	60 - 140
4-Bromofluorobenzene	94%	92%		60 - 140	100%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 Forest Pl.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Client signature on this Chain of Custody form constitutes acknowledgement that the above analyses have been regested, and the information provided herein is correct	Idda												1		
t signature on this Chain of Custody form constitutes	acku			ne	Printed Name	Prin			Laboratory Signature			ne	Printed Name		Representative Signature
	Client	S	1305	19	10/31/2019	Date 1		L, INC.	JONES ENVIRONMENTAL, INC		Time	10/31/2019	Date 10/31		Company Converse
Total Number of Containers	10			ne stor	Printed Name Jackson Nestor	Prin Jack			Laboratory Signature	S. C.	(Y)(Y)	Med	Printed-Name		Represeptative Signature
	1	2	×	×	SG	118009	JACKSON.1	200	F-0345-10	10:10	10:08	10/31/19	1980	3	BC-15-5'
	10	2	×	×	SG	M100.102	CASEY.1	200	F-0345-09	9:53	9:50	10/31/19	2150	ω	BC-14-15'
	1	2	×	×	SG	118012	JACKSON.1	200	F-0345-08	9:36	9:34	10/31/19	1980	ω	BC-14-5'
	10	2	×	×	SG	118009	CASEY.1	200	F-0345-07	9:20	9:16	10/31/19	2,150	ω	BC-13-15'
	1	2	×	×	SG	118012	JACKSON.1	200	F-0345-06	8:42	8:40	10/31/19	1,980	ω	BC-13-5'
	1	۵	×	×	SG	M100.102	CASEY.1	200	F-0345-05	9:03	9:01	10/31/19	1,980	ω	BC-12-15'
	1	۵	×	×	SG	118009	JACKSON.1	200	F-0345-04	8:25	8:24	10/31/19	2150	ω	BC-12-5' REP
	10	۵	×	×	SG	118009	JACKSON,1	200	F-0345-03	8:08	8:04	10/31/19	1980	ω	BC-12-5'
	1	۵	×	×	SG	118012	CASEY.1	200	F-0345-02	7:51	7:47	10/31/19	2150	ω	BC-11-15'
-458	1	2	×	×	SG	M100.102	JACKSON.1	200	F-0345-01	7:35	7:34	10/31/19	1980	ω	BC-11-5'
Notes & Special Instructions	100	Magnet	Gasolin	EPA 82		Magnehelic	Pump Used	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge Number	Sample ID
	r of Con	nelic Vac	e Range	60B (VC	Matrix:	My/m3	□ MDL*	□ Low Level* □ MDL* *surcharge for these limits	M Standard □		tor	Jackson Nestor	Jacks		Michael Van Fleet
GASTIGHT GLASS SYRINGE If different than above, see Notes.		cuum (Ir	e Organ	Cs)			0	g Limits	№ Mobile Lab Reporting Limits						Phone
Sample Container:		1/H ₂ O)	ics		(M)	lsopropyl Alchohol	□ Isopropy		□ Rush 72 Hours □ Normal						Email
1 of 2						ane ine	n-hentane	tion	Rush 24 Hours						Redondo Beach, CA
Page	ă	Analysis Requested	lysis R	Ana		Tracer	=	quested	Turn Around Requested					enue	520 North Prospect Avenue
F-0345	1	*Global ID	°G.		N / N	-in Test: W / N	Shut-In	-02	18-41-296-02						Project Name BCHD
Jones Project #	ırcharge	EDF* - 10% Surcharge	88	U	□ 10F	□ 1P 本3P □ 7P □ 10P	- 1P	19	10/31/2019						Converse
LAB USE ONLY	ions	Report Options			ř	urae Numb	D		Date						Client

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

and accurate.	•		Time			Date				Company		Time		Date		ompany
acknowledgement that the above analyses have been reqested, and the information provided herein is correct	acknowledger regested, and				Printed Name	Printed				Laboratory Signature			ne	Printed Name		epresentative Signature
Client signature on this Chain of Custody form constitutes	Client signature	O	130 °		10/31/2019	Date 10/			L. INC.	JONES ENVIRONMENTAL, INC		Time		Date 10/3:		Consense Consense
Total Number of Containers	7 Total Nun				Printed Name Jackson Nestor	Printer				Laboratory Signature	3	Was	M	1 2		epreseptative Signature
					-											
				-	+											
	_	۵	Î	×	SG	18012	_	CASEY.1	200	F-0345-17	12:37	12:34	10/31/19	2150	3	3C-8-15'
	-	۵	Î	×	SG	18009	_	JACKSON.1	200	F-0345-16	12:22	12:20	10/31/19	1980	w	3C-8-5'
	-	۵	^	×	SG	18012	_	CASEY.1	200	F-0345-15	12:02	11:58	10/31/19	2150	ω	3C-9-15'
	_	14	×	×	SG	100.102	3	JACKSON.1	200	F-0345-14	11:40	11:36	10/31/19	1980	ω	3C-9-5'
	-	۵	×	×	SG	100.102	3	CASEY.1	200	F-0345-13	11:23	11:20	10/31/19	2980	з	3C-10-15'
	-	۵	Ŷ	×	SG	18009	_	JACKSON.1	200	F-0345-12	11:08	11:05	10/31/19	2810	ω	3C-10-5'
-459	4	۵	×	×	SG	18012	_	CASEY.1	200	F-0345-11	10:27	10:24	10/31/19	2150	ω	3C-15-15'
Notes & Special Instructions	Number	Magneh	Gasonii		Soil Gas (S	gnehelic	Ma	Pump Used	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge Number	Sample ID
	of Cont	nelic Vac	e Kange	60B (VC	Matrix:		s Units	r these limits	□ Low Level* □ MDL* *surcharge for these limits	□ Standard □		Or	Sampler Jackson Nestor	Sampler		Report To Michael Van Fleet
If different than above, see Notes.	tainers	cuum (li	Organ		, Material				g Limits	□ Mobile Lab Reporting Limits						hone
Sample Container:		n/H ₂ O)	iics	ice	(M)	ohol	a Isopropyl Alchohol a 1,1-DFA	a Isopropyl A		□ Rush 72 Hours						imail
2 of 2							itane (ane	n-hexane	ition	Rush 24 Hours						Redondo Beach, CA
Page		ueste	Analysis Requested	naly	. ▶		Tracer		quested	Turn Around Requested					enue	520 North Prospect Avenue
F-0345		B	*Global ID		Z	St.	Shut-In Test: Y / N	Shu	3-02	18-41-296-02						BCHD
	charge	EDF* - 10% Surcharge	EDF*							Client Project #						roject Name
Jones Project #	ons	Report Options	Rep EDD_		100	umber:	Purge Number:	17	19	Date 10/31/2019						Converse
																-

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019

Project: Project: Progress Ave. Soil Cos.

Project Address: 520 North Prospect Ave Physical State: Soil Gas
Redondo Beach, California

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Annalise O'Toole

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/20Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID:	BC1-20'	BC1-20' REP	BC1-30'	BC2-5'	BC2-15'		
Jones ID:	G-0037-01	G-0037-02	G-0037-03	G-0037-04	G-0037-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	68	66	81	ND	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

	EPA 82	60B – Volati	le Organics k	by GC/MS +	Oxygenates		
Sample ID:	BC1-20'	BC1-20' REP	BC1-30'	BC2-5'	BC2-15'		
Jones ID:	G-0037-01	G-0037-02	G-0037-03	G-0037-04	G-0037-05	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	9	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	912	925	932	46	19	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	10	ND	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	14	13	12	19	8	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	
Dibromofluoromethane	88%	86%	88%	85%	85%	60 - 140	
Toluene-d ₈	88%	88%	87%	88%	87%	60 - 140	
4-Bromofluorobenzene	107%	109%	106%	109%	108%	60 - 140	
	G1-103119-	G1-103119-	G1-103119-	G1-103119-	G1-103119-		
Batch ID:	01	01	01	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

BC4-15'

BC5-5'

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

BC3-5'

BC3-15'

Sample ID:

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

BC4-5'

<u>—</u>							
Jones ID:	G-0037-06	G-0037-07	G-0037-08	G-0037-09	G-0037-10	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	8	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	17	16	30	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	27	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates	}
---	---

Sample ID:	BC3-5'	BC3-15'	BC4-5'	BC4-15'	BC5-5'		
Jones ID:	G-0037-06	G-0037-07	G-0037-08	G-0037-09	G-0037-10	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	22	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	10	ND	ND	8	μg/m3
Styrene	ND	ND	12	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	10	14	38	106	162	8	μg/m3
Toluene	ND	ND	45	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	10	12	ND	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	19	16	64	15	19	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	25	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3 μg/m3
m,p-Xylene	23	ND	76	ND	13	16	μg/m3 μg/m3
o-Xylene	13	ND	32	ND	9	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3 μg/m3
Di-isopropylether	ND ND	ND	ND ND	ND	ND ND	40	μg/m3 μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3 μg/m3
	ND ND	ND ND	ND ND	ND	ND ND	400	
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>:s</u>
Dibromofluoromethane	90%	78%	85%	89%	87%	60 - 140	
Toluene-d ₈	87%	88%	90%	87%	89%	60 - 140	
4-Bromofluorobenzene	109%	107%	109%	110%	107%	60 - 140	
D.A.L.ID.	G1-103119-	G1-103119-	G1-103119-	G1-103119-	G1-103119-		
Batch ID:	01	01	01	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

BC7-15'

BC7-5'

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

BC6-5'

BC5-15'

Sample ID:

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

BC6-15'

D C3 13	Dec 3	DC0 13	B C7 13	Ветз		
G-0037-11	G-0037-12	G-0037-13	G-0037-14	G-0037-15	Reporting Limit	<u>Units</u>
ND	ND	22	ND	8	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND	12	$\mu g/m3$
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND		$\mu g/m3$
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	16	μg/m3
ND	ND	ND	ND	ND	16	μg/m3
ND	ND	ND	ND	ND	16	μg/m3
47	41	114	21	86	8	μg/m3
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	16	μg/m3
ND	ND	ND	ND	ND	10	$\mu g/m3$
	ND N	ND ND ND <	ND ND 22 ND ND ND ND ND ND	ND ND 22 ND ND ND ND ND ND ND ND<	ND ND 22 ND 8 ND ND ND ND ND N	ND

	EPA 82	260B – Volati	le Organics l	oy GC/MS +	Oxygenates		
Sample ID:	BC5-15'	BC6-5'	BC6-15'	BC7-15'	BC7-5'		
Jones ID:	G-0037-11	G-0037-12	G-0037-13	G-0037-14	G-0037-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	22	ND	26	ND	21	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	9	ND	11	ND	11	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	370	651	841	336	1300	8	μg/m3
Toluene	18	ND	76	ND	54	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	10	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	24	18	36	8	24	8	μg/m3
1,3,5-Trimethylbenzene	8	ND	15	ND	8	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	105	14	95	ND	77	16	μg/m3
o-Xylene	45	9	35	ND	31	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	
Dibromofluoromethane	87%	84%	86%	85%	87%	60 - 140	
Toluene-d ₈	86%	87%	86%	87%	87%	60 - 140)

ND = Value below reporting limit

108%

01

110%

01

4-Bromofluorobenzene

Batch ID:

111%

G1-103119- G1-103119- G1-103119- G1-103119-

01

108%

01

109%

01

60 - 140

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	103119- G1MB1	103119- G1SB1	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	μg/m3
Bromobenzene	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	8	μg/m3
Chloroform	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	8	μg/m3
Dibromomethane	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B -	Volatile	Organics	by (GC/MS	+ Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	103119- G1MB1	103119- G1SB1	Reporting Limit	<u>Units</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND		μg/m3
trans-1,3-Dichloropropene	ND	ND		μg/m3
Ethylbenzene	ND	ND		$\mu g/m3$
Freon 113	ND	ND		μg/m3
Hexachlorobutadiene	ND	ND		μg/m3
Isopropylbenzene	ND	ND		μg/m3
4-Isopropyltoluene	ND	ND		μg/m3
Methylene chloride	ND	ND		μg/m3
Naphthalene	ND	ND		μg/m3
n-Propylbenzene	ND	ND		μg/m3
Styrene	ND	ND		μg/m3
1,1,1,2-Tetrachloroethane	ND	ND		μg/m3
1,1,2,2-Tetrachloroethane	ND	ND		μg/m3
Tetrachloroethene	ND	ND		μg/m3
Toluene	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND		$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND		$\mu g/m3$
1,1,1-Trichloroethane	ND	ND		$\mu g/m3$
1,1,2-Trichloroethane	ND	ND		$\mu g/m3$
Trichloroethene	ND	ND		μg/m3
Trichlorofluoromethane	ND	ND		$\mu g/m3$
1,2,3-Trichloropropane	ND	ND		μg/m3
1,2,4-Trimethylbenzene	ND	ND		μg/m3
1,3,5-Trimethylbenzene	ND	ND		μg/m3
Vinyl chloride	ND	ND		μg/m3
m,p-Xylene	ND	ND		μg/m3
o-Xylene	ND	ND		μg/m3
MTBE	ND	ND		μg/m3
Ethyl-tert-butylether	ND	ND		μg/m3
Di-isopropylether	ND	ND		μg/m3
tert-amylmethylether	ND	ND		μg/m3
tert-Butylalcohol	ND	ND	400	μg/m3
Tracer:				
n-Pentane	ND	ND		μg/m3
n-Hexane	ND	ND		μg/m3
n-Heptane	ND	ND	80	μg/m3
Dilution Factor	1	1		
Surrogate Recoveries:	0 :	0=0:	<u>QC Limits</u>	
Dibromofluoromethane	85%	87%	60 - 140	
Toluene-d ₈	93%	90%	60 - 140	
4-Bromofluorobenzene	101%	109%	60 - 140	
Batch ID:	G1-103119-	G1-103119-		
Dattii ID.	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019
BCHD Date Analyzed: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019
Project Address: 520 North Prospect Ave Physical State: Soil Gas

Redondo Beach, California

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Batch ID: G1-103119-01

Jones ID:	103119-G1LCS1	103119-G1LCSD1			103119	-G1CCV1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	69%	72%	3.8%	60 - 140	95%	80 - 120
1,1-Dichloroethene	103%	99%	4.5%	60 - 140	101%	80 - 120
Cis-1,2-Dichloroethene	129%	129%	0.3%	70 - 130	117%	80 - 120
1,1,1-Trichloroethane	128%	129%	0.3%	70 - 130	108%	80 - 120
Benzene	134%	122%	8.8%	70 - 130	107%	80 - 120
Trichloroethene	123%	125%	1.8%	70 - 130	95%	80 - 120
Toluene	107%	95%	11.2%	70 - 130	87%	80 - 120
Tetrachloroethene	127%	113%	12.1%	70 - 130	111%	80 - 120
Chlorobenzene	118%	120%	1.9%	70 - 130	109%	80 - 120
Ethylbenzene	113%	111%	2.1%	70 - 130	93%	80 - 120
1,2,4 Trimethylbenzene	122%	99%	20.6%1	70 - 130	93%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	98%	97%		60 - 140	82%	60 - 140
Toluene-d ₈	86%	81%		60 - 140	90%	60 - 140
4-Bromofluorobenzene	105%	101%		60 - 140	114%	60 - 140

¹=RPD outside of acceptable limits. CCV and LCS/LCSD recoveries were within QC limits, therefore data was accepted.

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

11007 Forest PI.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.jonesenv.com

Soil-Gas Chain-of-Custody Record

AND AN ADDRESS OF THE PARTY OF				Time			Date			Company	0	Time		Date		Attedute
acknowledgement that the above analyses have been requested, and the information provided herein is correct	acknowledg eqested, and	ā m			ne	Printed Name	Prints			Laboratory Signature	-		ē	Printed Name		Samparific agrantage
Client signature on this Chain of Custody form constitutes	ent signatur	£	00	13	19	10/31/2019	10		AL INC.	JONES ENVIRONMENTAL INC	-	THE STATE OF THE S	919	10/31/2019		Converse Commercial A
Total Number of Containers		10			ne	Printed Name Joel Almas	Joel Almas	8	Jaco 1	y Signature				Spencer Wagner		Representative Signature
		2	2		×	SG	118001	JOEL.1	200	G-0037-10	10:50	10:48	10/31/19	1630	ω	BC5-5'
		2	<2		×	SG	M100.155	JOEL.1	200	G-0037-09	10:32	10:27	10/31/19	1,790	ω	BC4-15'
		2	<2		×	SG	118001	JOEL.1	200	G-0037-08	10:15	10:06	10/31/19	1630	ω	BC4-5'
		2	<2		×	SG	M100.155	JOEL.1	200	G-0037-07	09:59	9:50	10/31/19	1,790	ω	BC3-15'
	-	2	<2		×	SG	118001	JOEL.1	200	G-0037-06	09:34	9:30	10/31/19	1630	ω	BC3-5'
		2	<2		×	SG	M100.155	JOEL.1	200	G-0037-05	09:18	09:15	10/31/19	1,790	ω	BC2-15'
	7.	10	^2		×	SG	118001	JOEL 1	200	G-0037-04	09:00	08:57	10/31/19	1630	ω	BC2-5'
	-	2	2		×	SG	M100.155	ANGELA 1	200	G-0037-03	08:35	08:28	10/31/19	2040	ω	BC1-30'
		2	۸		×	SG	118001	JOEL.1	200	G-0037-02	08:18	08:13	10/31/19	1880	ω	BC1-20' REP
		2	<2		×	SG	118001	JOEL 1	200	G-0037-01	08:01	07:56	10/31/19	1880	ω	BC1-20'
Notes & Special Instructions		-	Magnet	Gasolin	EPA 82	1000	Magnehelic	Pump Used	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge	Sample ID
	G. GOIN	of Cont	nelic Vac	e Range	60B (VO	Matrix: SG), Air (A),	Units 3	□ MDL*	□ Low Level* □ MDL* *surcharge for these limits	Standard :			lmas	Joel Almas		Michael Van Fleet
If different than above, see Notes.	un roll	_	uum	Orga	Cs)	Mater			g Limits	Reporting Limits						626-524-9320
GASTIGHT GLASS SYRINGE			In/H-∩	inics		al (M)	1,1-DFA	1,1-DFA		Normal Normal						Phone
Sample Container:)				ne	n-heptane		Rush 48 Hours						Email
1 of 2	-						ne	n-pentane	tion	□ Immediate Attention □ Rush 24 Hours					nia	Redondo Beach, California
Page		ed	Analysis Requested	lysis F	Ana		Tracer	Tra	quested	Turn Around Requested						520 North Prospect Ave
0-0007			*Global ID	9.		Z	In Test: (Y)	Shut-I	5-02	18-41-296-02						Project Address
6 0037		Olcila	EDF - 10% Sulcitarige							Client Project #						Project Name
Jones Project #		tions	Report Options	n E	J	10P	Purge Number: P d 3P d 7P d 10P	□ 1P □	19	10/31/2019						Converse
I AR LISE ONLY																Client

11007 Forest Pl.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.jonesenv.com

Soil-Gas Chain-of-Custody Record

10/31/2019 0.14 1.296-02 Standard 1.04 1.04 1.04 1.04 1.04 1.05 1.14 1.05 1.14 1.05 1.037-11 2.00 JOEL 3 1.790 10/31/19 1.123 1.124 G-0037-14 2.00 JOEL 3 1.790 10/31/19 1.125 1.126 G-0037-15 2.00 JOEL 1.126 G-0037-15 3.00 JOEL 1.126 JO	Dient signature on this Chain of Custody form constitute acknowledgement that the above analyses have been regested, and the information provided herein is correct and accurate.	Time Client signature on this Chain of Custody form constitute acknowledgement that the above analyses have been reqested, and the information provided herein is correct and accurate.		Date 10/31/2019 Printed Name	Date 10/2 Printed		AL INC	JONES ENVIRONMENTAL, INC. Laboratory Signature Company	0:00	Time 0:	719	Date 10/31/20 Printed Name		Company Converse Representative Signature
Mame	Ch			Name	Printed Name	0)	1	Laboratory Signature			ne	Printed Na		Representative Signature
Address Addr														
Name 10/31/2019 Client Project # Vourth Prospect Ave Client Project # 18-41-296-02 Namber Sampler To Sample ID Sample Purge Volume (m.L) Sample Collection Analysis (m.L) Time Sample Collection Analysis (m.L) Sample Collection Analysis (m.L) Sample Collection Analysis (m.L) Laboratory Sample ID Purge For the Purge Faste 5° 3 1,790 10/31/19 11:23 11:24 G-0037-11 200 July (m.L) 5° 3 1,790 10/31/19 11:41 11:42 G-0037-13 200 July (m.L) 5° 3 1,790 10/31/19 11:59 11:59 G-0037-14 200 July (m.L) 5° 3 1,790 10/31/19 11:59 G-0037-14 200 July (m.L) 5° 3 1,790 10/31/19 11:59 G-0037-14 200 July (m.L) 5° 3 1,790 10/31/19 11:59 G-0037-14 2				+										
Turn Around Requested Purge Reporting Limits Time Time	2			SG	M100.155 S	JOEL.1	200	G-0037-15	12:18	12:18	10/31/19	1630	ω	BC7-5'
Verse 10/31/2019 Client Project # Client Project # 18-41-296-02 Taddress Turn Around Requested Immediate Attention Rush 24 Hours Rush 24 Hours Rush 24 Hours Rush 72 Hours Purse Purge Indicate Sample Iab Sample Iab Purge Rate Collection Analysis Laboratory Sample ID Purge Rate (mL/min) Purge (mL/min)	2			SG X	M100.155 S	JOEL 1	200	G-0037-14	11:59	11:59	10/31/19	1,790	ω	BC7-15'
Verse 10/31/2019 Client Project # ID Client Project # Client Project # I 18-41-296-02 Taddress Turn Around Requested North Prospect Ave Turn Around Requested Purse All mas Sampler Sample Lab Rush 78 Hours Client Project # S24-9320 Sampler Sample Lab Reporting Limits To Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Quickinn Analysis Laboratory Sample ID Collection Analysis Laboratory Sample ID Purge Rate Purcharge for the Collection Analysis Laboratory Sample ID Collection Analysis Laboratory Sample ID Quickinn Analysis Laboratory Sample ID														

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Client: 717 S. Myrtle Ave **Client Address:**

Monrovia, CA 91016

Attn: Mike Van Fleet

BCHD Project:

Project Address: 520 N. Prospect Ave

Redondo Beach, CA

Report date: 11/1/2019 Jones Ref. No.: ST-14526

Client Ref. No.: 18-41-296-02

Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/28-29/19

Physical State: Soil

ANALYSES REQUESTED

Soil:

- 1. EPA 8015M – Extended Range Hydrocarbons
- EPA 8260B by 5035 Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics 2.
- 3. EPA 6010B by 3050B and EPA 7471A – CAM 17 Metals
- 4. EPA 8081A by 3546 – Chlorinated Pesticides by GC/ECD
- 5. EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Approval:

David Mirakian, M.S. Stationary Lab Chemist

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC1-2	BC1-30	BC2-2	BC2-5	BC3-2		
Jones ID:	ST-14526-01	ST-14526-05	ST-14526-06	ST-14526-07	ST-14526-10	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	<u>s</u>
Hexacosane	56%	44%	69%	69%	49%	30 - 120	
Datah	8015	8015	8015	8015	8015		
Batch:	102519 01	102519 01	102519 01	102519 01	102519 01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC3-5	BC4-2	BC4-5	BC5-2	BC5-5		
Jones ID:	ST-14526-11	ST-14526-14	ST-14526-15	ST-14526-18	ST-14526-19	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	
Hexacosane	59%	74%	85%	66%	54%	30 - 120	
Batch:	8015	8015	8015	8015	8015		
Dattii.	_102519_01	_102519_01	_102519_01	_102519_01	_102519_01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC6-2	BC6-5	BC7-2	BC7-5	BC8-2		
Jones ID:	ST-14526-22	ST-14526-23	ST-14526-26	ST-14526-27	ST-14526-30	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:	c=0 (0.70 (= 40 /	500/	OC Limit	<u>s</u>
Hexacosane	67%	85%	57%	74%	60%	30 - 120	
D 4 1	8015	8015	8015	8015	8015		
Batch:	_102519_01	_102519_01	_102519_01	_102519_01	_102519_01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC8-5	BC9-2	BC9-5	BC10-2	BC10-5		
Jones ID:	ST-14526-31	ST-14526-34	ST-14526-35	ST-14526-38	ST-14526-39	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	<u>:s</u>
Hexacosane	74%	65%	59%	57%	64%	30 - 120	
Datah	8015	8015	8015	8015	8015		
Batch:	_102519_01	_102519_01	_102519_01	_102519_01	_102519_01		

Redondo Beach, CA

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC11-2	BC11-5	BC12-2	BC12-5	BC13-2		
Jones ID:	ST-14526-42	ST-14526-43	ST-14526-46	ST-14526-47	ST-14526-50	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:	120/	4007	4.407	750/	5.00/	QC Limit	<u>s</u>
Hexacosane	42%	49%	44%	75%	56%	30 - 120	
Patah.	8015	8015	8015	8015	8015		
Batch:	_102519_02	_102519_02	_102519_02	_102519_02	_102519_02		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC13-5	BC14-2	BC14-5	BC15-2	BC15-5		
Jones ID:	ST-14526-51	ST-14526-54	ST-14526-55	ST-14526-58	ST-14526-59	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	1.2	ND	1.0	mg/kg
C20 - C23	ND	2.3	ND	5.7	ND	1.0	mg/kg
C24 - C27	ND	3.2	ND	10.8	ND	1.0	mg/kg
C28 - C31	ND	5.0	ND	21.9	ND	1.0	mg/kg
C32 - C35	ND	5.1	ND	30.8	ND	1.0	mg/kg
C36 - C39	ND	5.3	ND	43.6	ND	1.0	mg/kg
C40 - C43	ND	5.6	ND	50.7	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	20.9	ND	123	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	<u>s</u>
Hexacosane	88%	63%	81%	66%	63%	30 - 120	
Datah	8015	8015	8015	8015	8015		
Batch:	_102519_02	_102519_02	_102519_02	_102519_02	_102519_02		

Redondo Beach, CA

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526 Monrovia, CA 91016 **Client Ref. No.:** 18-41-296-02 Mike Van Fleet **Date Sampled:** 10/23/2019 Attn: **Date Received:** 10/24/2019 **Project: BCHD** 10/25-26/19 **Date Analyzed: Project Address:** 520 N. Prospect Ave **Physical State:** Soil

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	METHOD BLANK	METHOD BLANK	
Jones ID:	MB- 102519_01	MB- 102519_02	Reporting Limit Units
Carbon Chain Range			
C10 - C11	ND	ND	1.0 mg/kg
C12 - C13	ND	ND	1.0 mg/kg
C14 - C15	ND	ND	1.0 mg/kg
C16 - C17	ND	ND	1.0 mg/kg
C18 - C19	ND	ND	1.0 mg/kg
C20 - C23	ND	ND	1.0 mg/kg
C24 - C27	ND	ND	1.0 mg/kg
C28 - C31	ND	ND	1.0 mg/kg
C32 - C35	ND	ND	1.0 mg/kg
C36 - C39	ND	ND	1.0 mg/kg
C40 - C43	ND	ND	1.0 mg/kg
C13 - C22	ND	ND	10.0 mg/kg
C23 - C40	ND	ND	10.0 mg/kg
Dilution Factor	1	1	
Surrogate Recovery: Hexacosane	53%	63%	<u>QC Limits</u> 30 - 120
Batch:	8015 _102519_01	8015 _102519_02	

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project:BCHDDate Analyzed:10/25-26/19Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

<u>BATCH:</u> 8015_102519_01 <u>Prepared:</u> 10/24/2019 <u>Analyzed:</u> 10/25/2019

EPA 8015M - Extended Range Hydrocarbons

	Result	Spike Lev	rel % Recovery	% RPD	% Recovery Limits	Units
LCS:	LCS-102519	_01	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	407	500	81%		60 - 140	mg/kg
Surrogate Recovery:						
Hexacosane			59%		30 - 120	
LCSD:	LCSD-10251	9_01	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	445	500	89%	8.9%	60 - 140	mg/kg
Surrogate Recoveries:						
Hexacosane			69%		30 - 120	
CCV:	CCV-102519	9_01				
Analyte:						
Diesel	1170	1000	117%		80 - 120	mg/kg

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project:BCHDDate Analyzed:10/25-26/19Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

BATCH: 8015_102519_02 **Prepared:** 10/25/2019 **Analyzed:** 10/26/2019

EPA 8015M - Extended Range Hydrocarbons

	Result	Spike Le	vel % Recove	ery % RPD	% Recovery Limits	Units
LCS:	LCS-102519_	02	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	441	500	88%		60 - 140	mg/kg
Surrogate Recovery: Hexacosane			75%		30 - 120	
LCSD:	LCSD-102519	0_02	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	421	500	84%	4.6%	60 - 140	mg/kg
Surrogate Recoveries: Hexacosane			94%		30 - 120	
CCV:	CCV-102519_	02				
Analyte:						
Diesel	1160	1000	116%		80 - 120	mg/kg

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC1-2 BC1-30 BC2-2 BC2-5 BC3-2

Jones ID:	ST-14526-01	ST-14526-05	ST-14526-06	ST-14526-07	ST-14526-10	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC1-2	BC1-30	BC2-2	BC2-5	BC3-2

Jones ID:	ST-14526-01	ST-14526-05	ST-14526-06	ST-14526-07	ST-14526-10	Reporting Limit	<u>Units</u>
Analytes:						reporting Emily	<u> </u>
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	$\mu g/kg$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	$\mu g/kg$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	ts_
Dibromofluoromethane	103%	103%	102%	105%	108%	60 - 140	
Toluene-ds	97%	100%	97%	103%	99%	60 - 140	
4-Bromofluorobenzene	96%	103%	98%	99%	98%	60 - 140	
	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC3-5 BC4-2 BC4-5 BC5-2 BC5-5

Jones ID:	ST-14526-11	ST-14526-14	ST-14526-15	ST-14526-18	ST-14526-19	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC3-5	BC4-2	BC4-5	BC5-2	BC5-5

Jones ID:	ST-14526-11	ST-14526-14	ST-14526-15	ST-14526-18	ST-14526-19	Reporting Limit	Units
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	106%	105%	102%	105%	103%	60 - 140	
Toluene-d ₈	103%	101%	102%	99%	100%	60 - 140	
4-Bromofluorobenzene	97%	97%	103%	101%	101%	60 - 140	
	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01		

BC6-2

Sample ID:

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.:

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

18-41-296-02

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave **Physical State:** Soil

BC7-2

Redondo Beach, CA

EPA 8260B by 5035 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC7-5

BC8-2

BC6-5

Jones ID:	ST-14526-22	ST-14526-23	ST-14526-26	ST-14526-27	ST-14526-30	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC6-2	BC6-5	BC7-2	BC7-5	BC8-2
------------	-------	-------	-------	-------	-------

Jones ID:	ST-14526-22	ST-14526-23	ST-14526-26	ST-14526-27	ST-14526-30	Reporting Limit	<u>Units</u>	
Analytes:								
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg	
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg	
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg	
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg	
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg	
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg	
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg	
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg	
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg	
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg	
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg	
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg	
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg	
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg	
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg	
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg	
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg	
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg	
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg	
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg	
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg	
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg	
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg	
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg	
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg	
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg	
TIC:								
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg	
Dilution Factor	1	1	1	1	1			
Surrogate Recoveries:						QC Limit	QC Limits	
Dibromofluoromethane	105%	105%	103%	103%	104%	60 - 140		
Toluene-d ₈	100%	101%	100%	98%	102%	60 - 140		
4-Bromofluorobenzene	98%	101%	99%	101%	91%	60 - 140		
	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01	VOC3- 102819-01			

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC8-5 BC9-2 BC9-5 BC10-2 BC10-5

Jones ID:	ST-14526-31	ST-14526-34	ST-14526-35	ST-14526-38	ST-14526-39	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC8-5	BC9-2	BC9-5	BC10-2	BC10-5
------------	-------	-------	-------	--------	--------

Jones ID:	ST-14526-31	ST-14526-34	ST-14526-35	ST-14526-38	ST-14526-39	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Ethylbenzene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	$\mu g/kg$
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Methylene chloride	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	: <u>s</u>
Dibromofluoromethane	103%	100%	99%	100%	99%	60 - 140	
Toluene-d ₈	97%	88%	88%	87%	85%	60 - 140	
4-Bromofluorobenzene	99%	93%	92%	94%	92%	60 - 140	
	VOC3-	VOC4-	VOC4-	VOC4-	VOC4-		
	102819-01	102819-01	102819-01	102819-01	102819-01		
	102017-01	102017-01	102017-01	102017-01	102017-01		

ND= Value less than reporting limit

BC11-2

Sample ID:

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

BC12-5

BC13-2

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

BC12-2

EPA 8260B by 5035 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC11-5

Jones ID:	ST-14526-42	ST-14526-43	ST-14526-46	ST-14526-47	ST-14526-50	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC11-2	BC11-5	BC12-2	BC12-5	BC13-2
------------	--------	--------	--------	--------	--------

Jones ID:	ST-14526-42	ST-14526-43	ST-14526-46	ST-14526-47	ST-14526-50	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	99%	101%	99%	100%	99%	60 - 140	
Toluene-d ₈	87%	86%	89%	87%	88%	60 - 140	
4-Bromofluorobenzene	92%	91%	95%	92%	92%	60 - 140	
	VOC4-	VOC4-	VOC4-	VOC4-	VOC4-		
	102819-01	102819-01	102819-01	102819-01	102919-01		

ND= Value less than reporting limit

Redondo Beach, CA

BC13-5

Sample ID:

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

BC15-2

BC15-5

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

BC14-5

EPA 8260B by 5035 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC14-2

Jones ID:	ST-14526-51	ST-14526-54	ST-14526-55	ST-14526-58	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC13-5	BC14-2	BC14-5	BC15-2	BC15-5
------------	--------	--------	--------	--------	--------

Jones ID:	ST-14526-51	ST-14526-54	ST-14526-55	ST-14526-58	ST-14526-59	Reporting Limit	Units
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	100%	103%	102%	99%	101%	60 - 140	
Toluene-d ₈	87%	88%	86%	85%	86%	60 - 140	
4-Bromofluorobenzene	91%	92%	92%	90%	94%	60 - 140	
	VOC4- 102919-01	VOC4- 102919-01	VOC4- 102919-01	VOC4- 102919-01	VOC4- 102919-01		

ND= Value less than reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	METHOD BLANK	METHOD BLANK		
Jones ID:	102819- V3MB1	102819- V4MB1	102919- V4MB1	Reporting Limit	<u>Units</u>
Analytes:					
Benzene	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	METHOD BLANK	METHOD BLANK	
Jones ID:	102819- V3MB1	102819- V4MB1	102919- V4MB1	Reporting Limit Units
Analytes:				
trans-1,3-Dichloropropene	ND	ND	ND	1.0 μ g/kg
Ethylbenzene	ND	ND	ND	1.0 μ g/kg
Freon 11	ND	ND	ND	$5.0 \mu g/kg$
Freon 12	ND	ND	ND	$5.0 \mu g/kg$
Freon 113	ND	ND	ND	5.0 µg/kg
Hexachlorobutadiene	ND	ND	ND	1.0 µg/kg
Isopropylbenzene	ND	ND	ND	1.0 μ g/kg
4-Isopropyltoluene	ND	ND	ND	1.0 µg/kg
Methylene chloride	ND	ND	ND	1.0 µg/kg
Naphthalene	ND	ND	ND	1.0 μ g/kg
n-Propylbenzene	ND	ND	ND	1.0 µg/kg
Styrene	ND	ND	ND	1.0 µg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	1.0 µg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	1.0 µg/kg
Tetrachloroethene	ND	ND	ND	1.0 µg/kg
Toluene	ND	ND	ND	1.0 µg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	1.0 µg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	1.0 µg/kg
1,1,1-Trichloroethane	ND	ND	ND	1.0 µg/kg
1,1,2-Trichloroethane	ND	ND	ND	1.0 µg/kg
Trichloroethene	ND	ND	ND	1.0 µg/kg
1,2,3-Trichloropropane	ND	ND	ND	1.0 µg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	1.0 µg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	1.0 µg/kg
Vinyl chloride	ND	ND	ND	1.0 µg/kg
m,p-Xylene	ND	ND	ND	2.0 μg/kg
o-Xylene	ND	ND	ND	1.0 µg/kg
Methyl-tert-butylether	ND	ND	ND	5.0 µg/kg
Ethyl-tert-butylether	ND	ND	ND	5.0 μg/kg
Di-isopropylether	ND	ND	ND	5.0 μg/kg
tert-amylmethylether	ND	ND	ND	$5.0 \mu g/kg$
tert-Butylalcohol	ND	ND	ND	50.0 μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	0.20 mg/kg
TIC:				
Ethanol	ND	ND	ND	50.0 μg/kg
Dilution Factor	1	1	1	
Surrogate Recoveries:				QC Limits
Dibromofluoromethane	104%	99%	98%	60 - 140
Toluene-d ₈	102%	88%	89%	60 - 140
4-Bromofluorobenzene	100%	92%	91%	60 - 140
	VOC3-	VOC4-	VOC4-	
	102819-01	102819-01	102919-01	

ND= Value less than reporting limit

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample Spiked:	SOIL	GC#:	#: VOC3-102819-01			
Jones ID:	102819-V3MS1	102819-V3MSD1		102819-V3CCV1		
	MS	MSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	113%	94%	18.4%	60 - 140	79%	80 - 120
1,1-Dichloroethene	122%	105%	15.3%	60 - 140	115%	80 - 120
Cis-1,2-Dichloroethene	118%	109%	8.3%	70 - 130	113%	80 - 120
1,1,1-Trichloroethane	121%	108%	10.8%	70 - 130	121%	80 - 120
Benzene	118%	102%	13.9%	70 - 130	116%	80 - 120
Trichloroethene	116%	100%	15.1%	70 - 130	115%	80 - 120
Toluene	118%	108%	8.5%	70 - 130	119%	80 - 120
Tetrachloroethene	122%	110%	10.9%	70 - 130	120%	80 - 120
Chlorobenzene	111%	104%	6.3%	70 - 130	115%	80 - 120
Ethylbenzene	118%	113%	5.1%	70 - 130	119%	80 - 120
1,2,4 Trimethylbenzene	123%	113%	8.2%	70 - 130	119%	80 - 120
Gasoline Range Organics (C4-C12)	119%	109%	8.9%	70 - 130		
Surrogate Recovery:						
Dibromofluoromethane	103%	103%		60 - 140	92%	60 - 140
Toluene-d ₈	102%	101%		60 - 140	96%	60 - 140
4-Bromofluorobenzene	102%	104%		60 - 140	109%	60 - 140

MS = Matrix Spike

MSD = Matrix Spike Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

Vinyl Chloride below 80% on CCV. LCS, LCSD, RPD within acceptable range. Data accepted.

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/28-29/19

Project: BCHD Date Analyzed: 10/28-2

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample Spiked: CLEAN SOIL			GC#:	VOC4-102819-01			
Jones ID:	102819-V4MS1	102819-V4MSD1		10	2819-V4CC	V1	
	MS	MSD		Acceptability		Acceptability	
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)	
Vinyl chloride	146%	126%	14.7%	60 - 140	114%	80 - 120	
1,1-Dichloroethene	76%	62%	19.0%	60 - 140	117%	80 - 120	
Cis-1,2-Dichloroethene	129%	114%	11.7%	70 - 130	110%	80 - 120	
1,1,1-Trichloroethane	122%	110%	10.4%	70 - 130	109%	80 - 120	
Benzene	122%	110%	10.7%	70 - 130	112%	80 - 120	
Trichloroethene	117%	107%	8.5%	70 - 130	107%	80 - 120	
Toluene	118%	106%	10.3%	70 - 130	107%	80 - 120	
Tetrachloroethene	111%	103%	7.9%	70 - 130	102%	80 - 120	
Chlorobenzene	100%	100%	0.4%	70 - 130	102%	80 - 120	
Ethylbenzene	119%	108%	10.0%	70 - 130	107%	80 - 120	
1,2,4 Trimethylbenzene	119%	109%	9.1%	70 - 130	113%	80 - 120	
Gasoline Range Organics (C4-C12)	120%	108%	10.0%	70 - 130			
Surrogate Recovery:							
Dibromofluoromethane	95%	96%		60 - 140	92%	60 - 140	
Toluene-d ₈	87%	91%		60 - 140	88%	60 - 140	
4-Bromofluorobenzene	93%	94%		60 - 140	95%	60 - 140	

MS = Matrix Spike

MSD = Matrix Spike Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD
 Date Received:
 10/24/2019

 Date Analyzed:
 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample Spiked:	SOIL	GC#:	VOC4-102919-01			
Jones ID:	102919-V4MS1	102919-V4MSD1		10	2919-V4CC	V1
D	MS	MSD	DDD	Acceptability	COL	Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	124%	124%	0.2%	60 - 140	92%	80 - 120
1,1-Dichloroethene	97%	98%	0.9%	60 - 140	95%	80 - 120
Cis-1,2-Dichloroethene	110%	115%	4.8%	70 - 130	94%	80 - 120
1,1,1-Trichloroethane	108%	108%	0.1%	70 - 130	90%	80 - 120
Benzene	108%	112%	3.2%	70 - 130	94%	80 - 120
Trichloroethene	102%	105%	2.9%	70 - 130	90%	80 - 120
Toluene	104%	106%	1.5%	70 - 130	95%	80 - 120
Tetrachloroethene	100%	102%	2.1%	70 - 130	89%	80 - 120
Chlorobenzene	100%	101%	1.2%	70 - 130	88%	80 - 120
Ethylbenzene	107%	109%	1.7%	70 - 130	96%	80 - 120
1,2,4 Trimethylbenzene	108%	109%	1.6%	70 - 130	101%	80 - 120
Gasoline Range Organics (C4-C12)	107%	109%	2%	70 - 130		
Surrogate Recovery:						
Dibromofluoromethane	98%	96%		60 - 140	99%	60 - 140
Toluene-d ₈	90%	89%		60 - 140	100%	60 - 140
4-Bromofluorobenzene	93%	92%		60 - 140	116%	60 - 140

MS = Matrix Spike

MSD = Matrix Spike Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,2

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-01

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	32.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	8.8	1	"	"	"	0.5	mg/kg
Copper, Cu	2.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	4.4	1	"	"	"	0.5	mg/kg
Lead, Pb	1.7	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.4	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC1-30 Jones ID: ST-14526-05

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	10.4	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	1.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	6.2	1	"	"	"	0.5	mg/kg
Copper, Cu	1.5	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.7	1	"	"	"	0.5	mg/kg
Lead, Pb	0.7	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	6.0	1	**	"	"	0.5	mg/kg
Zinc, Zn	6.7	1	**	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,2
Project Address: 520 N. Prospect Ave, Physical State: Soil

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC2-2 Jones ID: ST-14526-06

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	46.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.8	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	12.1	1	"	"	"	0.5	mg/kg
Copper, Cu	4.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.5	1	"	"	"	0.5	mg/kg
Lead, Pb	2.2	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	16.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	17.9	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.036	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20
Project Address: 520 N. Prospect Ave, Physical State: Soil

Project Address: 520 N. Prospect Ave,
Redondo Beach, CA

Sample ID: BC2-5 Jones ID: ST-14526-07

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	28.5	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	**	11	"	0.5	mg/kg
Cobalt, Co	3.5	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.6	1	**	11	"	0.5	mg/kg
Copper, Cu	3.2	1	**	11	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	4.3	1	**	11	"	0.5	mg/kg
Lead, Pb	1.6	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	**	11	"	5.0	mg/kg
Selenium, Se	ND	1	**	11	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	14.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	13.5	1	**	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28Project Address:520 N. Prospect Ave,Physical State:Soil

Redondo Beach, CA

Sample ID: BC3-2 Jones ID: ST-14526-10

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	26.3	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	5.1	1	"	"	"	0.5	mg/kg
Chromium, Cr	21.5	1	"	"	"	0.5	mg/kg
Copper, Cu	3.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.6	1	"	"	"	0.5	mg/kg
Lead, Pb	1.8	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.8	1	"	"	"	0.5	mg/kg
Zinc, Zn	13.1	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.058	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC3-5 Jones ID: ST-14526-11

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	21.1	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	17.1	1	"	"	"	0.5	mg/kg
Copper, Cu	2.8	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.4	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.2	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.100	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,Project Address:520 N. Prospect Ave,Physical State:Soil

Redondo Beach, CA

Sample ID: ST-14526-14

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	28.7	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.5	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.7	1	"	"	"	0.5	mg/kg
Chromium, Cr	16.0	1	"	"	"	0.5	mg/kg
Copper, Cu	2.6	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.9	1	"	"	"	0.5	mg/kg
Lead, Pb	1.4	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	11.3	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.033	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/2Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC4-5 Jones ID: ST-14526-15

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.2	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	26.6	1	"	"	"	0.5	mg/kg
Copper, Cu	3.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	9.1	1	"	"	"	0.5	mg/kg
Lead, Pb	1.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	17.0	1	"	"	"	0.5	mg/kg
Zinc, Zn	11.6	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.052	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 805-399-0060

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

BC5-2 Sample ID: Jones ID: ST-14526-18

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	21.2	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	14.5	1	"	"	"	0.5	mg/kg
Copper, Cu	2.5	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	0.7	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.2	1	"	"	"	0.5	mg/kg
Lead, Pb	2.1	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.0	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.6	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.030	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC5-5 Jones ID: ST-14526-19

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.9	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.9	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	22.7	1	"	"	"	0.5	mg/kg
Copper, Cu	3.1	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	8.5	1	"	"	"	0.5	mg/kg
Lead, Pb	2.1	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	21.8	1	"	"	"	0.5	mg/kg
Zinc, Zn	14.8	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.058	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 805-399-0060

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

BC6-2 Sample ID: Jones ID: ST-14526-22

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	32.1	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	1.0	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	27.0	1	"	"	"	0.5	mg/kg
Copper, Cu	3.2	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	9.7	1	"	"	"	0.5	mg/kg
Lead, Pb	2.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	23.4	1	**	"	"	0.5	mg/kg
Zinc, Zn	14.7	1	**	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.045	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2

Project Address: 520 N. Prospect Ave, Physical State: Soil

Project Address: 520 N. Prospect Ave, Physical State:

Redondo Beach, CA

Sample ID: BC6-5 Jones ID: ST-14526-23

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	33.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.6	1	"	"	"	0.5	mg/kg
Copper, Cu	3.6	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.4	1	"	"	"	0.5	mg/kg
Lead, Pb	2.1	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.2	1	"	"	"	0.5	mg/kg
Zinc, Zn	12.1	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.072	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2

Project Address: 520 N Prospect Ave Physical State: Soil

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-26

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	19.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.2	1	"	"	"	0.5	mg/kg
Copper, Cu	2.9	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.3	1	"	"	"	0.5	mg/kg
Lead, Pb	2.9	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.0	1	"	"	"	0.5	mg/kg
Zinc, Zn	11.8	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.036	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-27

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	17.8	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	13.7	1	"	"	"	0.5	mg/kg
Copper, Cu	2.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.6	1	"	"	"	0.5	mg/kg
Lead, Pb	1.2	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	10.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.1	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.041	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC8-2 Jones ID: ST-14526-30

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	36.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.2	1	"	"	"	0.5	mg/kg
Chromium, Cr	16.5	1	"	"	"	0.5	mg/kg
Copper, Cu	3.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	0.9	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.9	1	"	"	"	0.5	mg/kg
Lead, Pb	2.0	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	12.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/20Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC8-5 Jones ID: ST-14526-31

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	14.0	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	1.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	9.6	1	"	"	"	0.5	mg/kg
Copper, Cu	1.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.6	1	"	"	"	0.5	mg/kg
Lead, Pb	1.0	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	8.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	6.7	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.046	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC9-2 Jones ID: ST-14526-34

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	20.7	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	15.4	1	"	"	"	0.5	mg/kg
Copper, Cu	2.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	4.9	1	"	"	"	0.5	mg/kg
Lead, Pb	1.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.0	1	"	"	"	0.5	mg/kg
Zinc, Zn	31.6	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.078	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,Project Address:520 N. Prospect Ave,Physical State:Soil

Redondo Beach, CA

Sample ID: BC9-5 Jones ID: ST-14526-35

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	17.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	1.8	1	"	"	"	0.5	mg/kg
Chromium, Cr	12.3	1	"	"	"	0.5	mg/kg
Copper, Cu	2.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.0	1	"	"	"	0.5	mg/kg
Lead, Pb	0.9	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	11.3	1	"	"	"	0.5	mg/kg
Zinc, Zn	9.8	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.093	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 805-399-0060

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

BCHD

BC10-2 Sample ID: Jones ID: ST-14526-38

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	25.8	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.8	1	"	"	"	0.5	mg/kg
Chromium, Cr	14.4	1	"	"	"	0.5	mg/kg
Copper, Cu	4.2	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.0	1	"	"	"	0.5	mg/kg
Lead, Pb	4.7	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	22.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.085	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: Jones ID: ST-14526-39

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	20.5	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	17.5	1	"	"	"	0.5	mg/kg
Copper, Cu	2.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	8.5	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	11.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.094	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-42

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	35.3	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	12.5	1	"	"	"	0.5	mg/kg
Copper, Cu	3.5	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	8.6	1	"	"	"	0.5	mg/kg
Lead, Pb	2.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.6	1	"	"	"	0.5	mg/kg
Zinc, Zn	19.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.047	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20
Project Address: 520 N. Prospect Ave, Physical State: Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-43

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.2	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.8	1	"	"	"	0.5	mg/kg
Copper, Cu	3.9	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.3	1	"	"	"	0.5	mg/kg
Lead, Pb	1.9	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.1	1	"	"	"	0.5	mg/kg
Zinc, Zn	17.5	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.029	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/2Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC12-2 Jones ID: ST-14526-46

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	13.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.1	1	"	"	"	0.5	mg/kg
Chromium, Cr	8.4	1	"	"	"	0.5	mg/kg
Copper, Cu	2.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.3	1	"	"	"	0.5	mg/kg
Lead, Pb	1.1	1	"	11	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	11	"	5.0	mg/kg
Vanadium, V	9.0	1	"	"	"	0.5	mg/kg
Zinc, Zn	7.2	1	"	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.141	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,2Project Address:520 N. Prospect Ave,Physical State:Soil

Redondo Beach, CA

<u>Sample ID:</u> BC12-5 <u>Jones ID:</u> ST-14526-47

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	26.5	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	28.6	1	"	"	"	0.5	mg/kg
Copper, Cu	3.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.7	1	"	"	"	0.5	mg/kg
Lead, Pb	1.5	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	18.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	12.6	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.234	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC13-2 Jones ID: ST-14526-50

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	24.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.5	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.1	1	"	"	"	0.5	mg/kg
Chromium, Cr	10.3	1	"	"	"	0.5	mg/kg
Copper, Cu	2.8	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.9	1	"	"	"	0.5	mg/kg
Lead, Pb	1.4	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	11.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.043	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29.

Project Address: 520 N. Prospect Ave, Physical State: Soil

Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC13-5 Jones ID: ST-14526-51

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	48.0	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	1.0	1	"	"	"	0.5	mg/kg
Cobalt, Co	6.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	30.1	1	"	"	"	0.5	mg/kg
Copper, Cu	5.4	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	11.2	1	"	"	"	0.5	mg/kg
Lead, Pb	2.4	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	23.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	18.5	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.088	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-54

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	35.1	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.2	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.1	1	"	"	"	0.5	mg/kg
Copper, Cu	4.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.6	1	"	"	"	0.5	mg/kg
Lead, Pb	7.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	14.6	1	"	"	"	0.5	mg/kg
Zinc, Zn	23.1	1	"	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.042	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC14-5 Jones ID: ST-14526-55

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	17.9	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	9.9	1	"	"	"	0.5	mg/kg
Copper, Cu	2.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.5	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	11.1	1	"	"	"	0.5	mg/kg
Zinc, Zn	8.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.076	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC15-2 Jones ID: ST-14526-58

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	54.9	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.8	1	"	"	"	0.5	mg/kg
Chromium, Cr	8. 7	1	"	"	"	0.5	mg/kg
Copper, Cu	3.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.9	1	"	"	"	0.5	mg/kg
Lead, Pb	3.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	11.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	16.9	1	"	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.030	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC15-5 Jones ID: ST-14526-59

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.2	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	14.9	1	"	"	"	0.5	mg/kg
Copper, Cu	2.8	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.2	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.8	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.055	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28;

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

BATCH: I19102502 Prepared: 10/25/2019 **Analyzed:** 10/28/2019

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Spike Level	% REC	% REC Limits	% RPD	Reporting Limit	Units
Analytes:							
METHOD BLANK:	I191025-MB2						
Silver, Ag	ND					0.5	mg/kg
Arsenic, As	ND					5.0	mg/kg
Barium, Ba	ND					0.5	mg/kg
Beryllium, Be	ND					0.5	mg/kg
Cadmium, Cd	ND					0.5	mg/kg
Cobalt, Co	ND					0.5	mg/kg
Chromium, Cr	ND					0.5	mg/kg
Copper, Cu	ND					1.0	mg/kg
Molybdenum, Mo	ND					0.5	mg/kg
Nickel, Ni	ND					0.5	mg/kg
Lead, Pb	ND					0.5	mg/kg
Antimony, Sb	ND					5.0	mg/kg
Selenium, Se	ND					5.0	mg/kg
Thallium, Tl	ND					5.0	mg/kg
Vanadium, V	ND					0.5	mg/kg
Zinc, Zn	ND					5.0	mg/kg

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

18-41-296-02 Monrovia, CA 91016 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 Attn: **Date Sampled:**

> **Date Received:** 10/24/2019 10/25,28,29/2019 Date Analyzed:

Project: Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

I19102502 **BATCH:** Prepared: 10/28/2019 10/25/2019 Analyzed:

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	Spike Level	% REC	% RPD	% REC Limits	
Analytes:		~ F				Units
LCS:	I191025-LCS	2				
Barium, Ba	208	200	104%		80 - 120	mg/kg
Cobalt, Co	51.3	50.0	103%		80 - 120	mg/kg
Lead, Pb	53.6	50.0	107%		80 - 120	mg/kg
Selenium, Se	204	200	102%		80 - 120	mg/kg
Zinc, Zn	47.8	50.0	96%		80 - 120	mg/kg
LCSD:	I191025-LCS	D2				
Barium, Ba	207	200	104%	0.4%	80 - 120	mg/kg
Cobalt, Co	51.2	50.0	102%	0.2%	80 - 120	mg/kg
Lead, Pb	53.0	50.0	106%	1.1%	80 - 120	mg/kg
Selenium, Se	201	200	101%	1.2%	80 - 120	mg/kg
Zinc, Zn	47.7	50.0	95%	0.3%	80 - 120	mg/kg
CCV:	I191028-CCV	72				
Barium, Ba	0.98	1.00	98%		90-110	mg/L
Cobalt, Co	1.00	1.00	100%		90-110	mg/L
Lead, Pb	1.01	1.00	101%		90-110	mg/L
Selenium, Se	1.01	1.00	101%		90-110	mg/L
Zinc, Zn	0.96	1.00	96%		90-110	mg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 15\%$

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019

 $\mu g/L$

Project:BCHDDate Analyzed: 10/25,28,29/2019Project Address:520 N. Prospect Ave,Physical State: Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

BATCH: H19102501 Prepared: 10/25/2019 **Analyzed:** 10/25/2019

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
METHOD BLANK:	H191025-MB1						
Mercury, Hg	ND					0.020	mg/kg
LCS:	H191025-LCS1						
Mercury, Hg	0.99	1.00	99%		80 - 120		mg/kg
LCSD:	H191025-LCSI	D1					
Mercury, Hg	0.99	1.00	99%	0.4%	80 - 120		mg/kg
CCV:	H191025-CCV						

95%

90-110

ND= Not Detected

Mercury, Hg

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

4.74

5.00

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019 **Client Address:**

717 S. Myrtle Ave. Jones Ref. No.: ST-14526

18-41-296-02 Monrovia, CA 91016 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 Attn: **Date Sampled:**

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: BCHD Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

I19102801 **BATCH:** Prepared: 10/28/2019 10/29/2019 Analyzed:

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Spike Level	% REC	% REC Limits	% RPD	Reporting Limit	Units
Analytes:							
METHOD BLANK:	I191028-MB1						
Silver, Ag	ND					0.5	mg/kg
Arsenic, As	ND					5.0	mg/kg
Barium, Ba	ND					0.5	mg/kg
Beryllium, Be	ND					0.5	mg/kg
Cadmium, Cd	ND					0.5	mg/kg
Cobalt, Co	ND					0.5	mg/kg
Chromium, Cr	ND					0.5	mg/kg
Copper, Cu	ND					1.0	mg/kg
Molybdenum, Mo	ND					0.5	mg/kg
Nickel, Ni	ND					0.5	mg/kg
Lead, Pb	ND					0.5	mg/kg
Antimony, Sb	ND					5.0	mg/kg
Selenium, Se	ND					5.0	mg/kg
Thallium, Tl	ND					5.0	mg/kg
Vanadium, V	ND					0.5	mg/kg
Zinc, Zn	ND					5.0	mg/kg

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

18-41-296-02 Monrovia, CA 91016 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 Attn: **Date Sampled:**

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

I19102801 **BATCH:** Prepared: 10/29/2019 10/28/2019 Analyzed:

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	Spike Level	% REC	% RPD	% REC Limits	Units
Analytes:						Cints
LCS:	I191028-LCS	1				
Barium, Ba	190	200	95%		80 - 120	mg/kg
Cobalt, Co	46.3	50.0	93%		80 - 120	mg/kg
Lead, Pb	47.8	50.0	96%		80 - 120	mg/kg
Selenium, Se	181	200	91%		80 - 120	mg/kg
Zinc, Zn	43.0	50.0	86%		80 - 120	mg/kg
LCSD:	I191028-LCS	1				
Barium, Ba	195	200	97%	2.8%	80 - 120	mg/kg
Cobalt, Co	47.7	50.0	95%	2.9%	80 - 120	mg/kg
Lead, Pb	49.2	50.0	98%	2.9%	80 - 120	mg/kg
Selenium, Se	187	200	94%	3.0%	80 - 120	mg/kg
Zinc, Zn	44.0	50.0	88%	2.2%	80 - 120	mg/kg
CCV:	I191029-CCV	1				
Barium, Ba	0.99	1.00	99%		90-110	mg/L
Cobalt, Co	0.96	1.00	96%		90-110	mg/L
Lead, Pb	1.04	1.00	104%		90-110	mg/L
Selenium, Se	1.05	1.00	105%		90-110	mg/L
Zinc, Zn	0.96	1.00	96%		90-110	mg/L

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

BATCH: H19102801 Prepared: 10/28/2019 **Analyzed:** 10/28/2019

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
METHOD BLANK:	H191028-MB1						
Mercury, Hg	ND					0.020	mg/kg

LCS:	H191028-LCS1				
Mercury, Hg	1.03	1.00	103%	80 - 120	mg/kg

LCSD:	H191028-LCSE)1				
Mercury, Hg	1.02	1.00	102%	0.009756098	80-120	mg/kg

CCV:	H191028-CCV1				
Mercury, Hg	4.75	5.00	95%	90-110	$\mu g/L$

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-01

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•							

Surrogate Recoveries:		QC Limits
TCMX	46%	30 - 120
Decachlorobiphenyl	55%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

Jones ID: ST-14526-06 Sample ID: BC2-2

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	44%	30 - 120
Decachlorobiphenyl	45%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

Sample ID: BC3-2 Jones ID: ST-14526-10

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Project:

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		QC Limits
TCMX	60%	30 - 120
Decachlorobiphenyl	56%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

Sample ID: BC4-2 Jones ID: ST-14526-14

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		QC Limits
TCMX	51%	30 - 120
Decachlorobiphenyl	44%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

Jones ID: ST-14526-18 Sample ID: BC5-2

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		QC Limits
TCMX	56%	30 - 120
Decachlorobiphenyl	51%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,2Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

<u>Sample ID:</u> BC6-2 <u>Jones ID:</u> ST-14526-22

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		<u>QC Limits</u>
TCMX	50%	30 - 120
Decachlorobiphenyl	52%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,3Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-26

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	<u>Result</u>	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	49%	30 - 120
Decachlorobiphenyl	51%	30 - 120

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

Jones ID: ST-14526-30 Sample ID: BC8-2

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	<u>Result</u>	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	II .	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	II .	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	33%	30 - 120
Decachlorobiphenyl	53%	30 - 120

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

BC9-2 Sample ID: **Jones ID:** ST-14526-34

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		QC Limits
TCMX	40%	30 - 120
Decachlorobiphenyl	39%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

<u>Sample ID:</u> BC10-2 <u>Jones ID:</u> ST-14526-38

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Project:

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	254	10	"	"	"	10	μg/kg
4,4'-DDT	30.0	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						*	1-5-5

Surrogate Recoveries:		QC Limits
TCMX	46%	30 - 120
Decachlorobiphenyl	53%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

<u>Sample ID:</u> BC11-2 <u>Jones ID:</u> ST-14526-42

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102819_01	10/28/2019	10/28/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•							

Surrogate Recoveries:		QC Limits
TCMX	69%	30 - 120
Decachlorobiphenyl	84%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

Sample ID: Jones ID: ST-14526-46

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	<u>Result</u>	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	II .	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	II .	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	95%	30 - 120
Decachlorobiphenyl	106%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

<u>Sample ID:</u> BC13-2 <u>Jones ID:</u> ST-14526-50

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		QC Limits
TCMX	83%	30 - 120
Decachlorobiphenyl	99%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,3Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave **Physical State:** Soil Redondo Beach, CA

<u>Sample ID:</u> BC14-2 <u>Jones ID:</u> ST-14526-54

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						= -	r-00

Surrogate Recoveries:		QC Limits
TCMX	59%	30 - 120
Decachlorobiphenyl	70%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

<u>Sample ID:</u> BC15-2 <u>Jones ID:</u> ST-14526-58

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	II .	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
•						•	1.0 8

Surrogate Recoveries:		QC Limits
TCMX	61%	30 - 120
Decachlorobiphenyl	77%	30 - 120

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

Sample ID: Method Blank Jones ID: MB-102519_01

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	II .	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
,							~~ ~~

Surrogate Recoveries:		QC Limits
TCMX	76%	30 - 120
Decachlorobiphenyl	71%	30 - 120

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,2Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

	LCS	LCSD	% RPD	Spike Level	% Recovery Limits	Units
	LCS-102519_01	LCSD-102519	_01			
Analytes:						
α-ВНС	95.4	90.8	5%	100	60 - 140	ppb
γ-Chlordane	101	92.2	9%	100	60 - 140	ppb
Aldrin	100	93.9	6%	100	60 - 140	ppb
4,4'-DDD	109	97.4	11%	100	60 - 140	ppb
4,4'-DDE	105	93.7	11%	100	60 - 140	ppb
4,4'-DDT	100	89.9	11%	100	60 - 140	ppb
Dieldrin	113	103	9%	100	60 - 140	ppb
Endosulfan I	99.3	91.7	8%	100	60 - 140	ppb
Endosulfan II	115	105	9%	100	60 - 140	ppb
Endrin	107	97.8	9%	100	60 - 140	ppb
Endrin ketone	107	97.9	9%	100	60 - 140	ppb
Heptachlor	97.5	91.5	6%	100	60 - 140	ppb
Heptachlor epoxide	99.9	93.9	6%	100	60 - 140	ppb
Surrogate Recoveries:						
TCMX	92%	86%			30 - 120	
Decachlorobiphenyl	101%	92%			30 - 120	

LCS= Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

RPD = Relative Percent Difference

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/25,28/2019

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Project Address:

	Result	Spike Level	% Recovery	% Recovery Limits	Units
CCV:	CCV-102519	_01			
Analytes:					
α-ВНС	92.3	100	92%	80-120	ppb
γ-Chlordane	90.1	100	90%	80-120	ppb
Aldrin	93.9	100	94%	80-120	ppb
4,4'-DDD	96.9	100	97%	80-120	ppb
4,4'-DDE	90.7	100	91%	80-120	ppb
4,4'-DDT	81.7	100	82%	80-120	ppb
Dieldrin	101	100	101%	80-120	ppb
Endosulfan I	90.2	100	90%	80-120	ppb
Endosulfan II	102	100	102%	80-120	ppb
Endrin	91.8	100	92%	80-120	ppb
Endrin ketone	91.8	100	92%	80-120	ppb
Heptachlor	90.8	100	91%	80-120	ppb
Heptachlor epoxide	90.7	100	91%	80-120	ppb
Surrogate Recovery:					
TCMX	93%			30-120	
Decachlorobiphenyl	90%			30-120	

CCV= Continuing Calibration Verification

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,2Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave **Physical State:** Soil Redondo Beach, CA

Sample ID: Method Blank Jones ID: MB-102819_01

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102819_01	10/28/2019	10/28/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg μg/kg
· · · · · · · · · · · · · · · · · · ·		-				20	46/16

Surrogate Recoveries:		QC Limits
TCMX	82%	30 - 120
Decachlorobiphenyl	94%	30 - 120

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project:BCHDDate Analyzed:10/25,28/2019Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

	LCS	LCSD	% RPD	Spike Level	% Recovery Limits	Units
	LCS-102819_01	LCSD-102819	_01			
Analytes:						
α-ВНС	86.3	83.6	3%	100	60 - 140	ppb
γ-Chlordane	92.8	96.1	3%	100	60 - 140	ppb
Aldrin	91.3	85.0	7%	100	60 - 140	ppb
4,4'-DDD	97.3	93.1	4%	100	60 - 140	ppb
4,4'-DDE	94.3	87.0	8%	100	60 - 140	ppb
4,4'-DDT	91.2	84.3	8%	100	60 - 140	ppb
Dieldrin	105	96.8	8%	100	60 - 140	ppb
Endosulfan I	92.4	85.3	8%	100	60 - 140	ppb
Endosulfan II	108	99.5	8%	100	60 - 140	ppb
Endrin	97.7	90.0	8%	100	60 - 140	ppb
Endrin ketone	100	93.0	7%	100	60 - 140	ppb
Heptachlor	89.0	82.7	7%	100	60 - 140	ppb
Heptachlor epoxide	91.5	85.6	7%	100	60 - 140	ppb
Surrogate Recoveries:						
TCMX	99%	93%			30 - 120	
Decachlorobiphenyl	112%	108%			30 - 120	

LCS= Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

RPD = Relative Percent Difference

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/25,28/2019

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Project Address:

	Result	Spike Level	% Recovery	% Recovery Limits	Units
CCV:	CCV-102819_	_01			
Analytes:					
α-ВНС	92.9	100	93%	80-120	ppb
γ-Chlordane	90.2	100	90%	80-120	ppb
Aldrin	93.7	100	94%	80-120	ppb
4,4'-DDD	97.1	100	97%	80-120	ppb
4,4'-DDE	90.5	100	91%	80-120	ppb
4,4'-DDT	81.2	100	81%	80-120	ppb
Dieldrin	100	100	100%	80-120	ppb
Endosulfan I	90.7	100	91%	80-120	ppb
Endosulfan II	99.7	100	100%	80-120	ppb
Endrin	90.5	100	91%	80-120	ppb
Endrin ketone	94.1	100	94%	80-120	ppb
Heptachlor	90.1	100	90%	80-120	ppb
Heptachlor epoxide	91.7	100	92%	80-120	ppb
Surrogate Recovery:					
TCMX	90%			30-120	
Decachlorobiphenyl	94%			30-120	

CCV= Continuing Calibration Verification

BCHD

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Client: Report date: 11/1/2019 **Client Address:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 Attn: **Date Sampled:**

> **Date Received:** 10/24/2019 10/30/2019 **Date Analyzed:**

Project: 520 N. Prospect Ave, **Project Address: Physical State:** Soil

Redondo Beach, CA

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

Sample ID: BC11-5 BC12-5 BC13-5 BC14-5 BC15-5

Jones ID:	ST-14526-43	ST-14526-47	ST-14526-51	ST-14526-55	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
1,4 Dioxane	ND	ND	ND	ND	ND	200	μg/kg
Phenol	ND	ND	ND	ND	ND	100	μg/kg
Bis(2-chloroethyl) ether	ND	ND	ND	ND	ND	100	μg/kg
2-Chlorophenol	ND	ND	ND	ND	ND	100	μg/kg
1, 3 Dichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
1, 4 Dichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
1, 2 Dichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
o-Cresol	ND	ND	ND	ND	ND	100	μg/kg
m, p-Cresols++	ND	ND	ND	ND	ND	100	μg/kg
Hexachloroethane	ND	ND	ND	ND	ND	100	μg/kg
Nitrobenzene	ND	ND	ND	ND	ND	100	μg/kg
Isophorone	ND	ND	ND	ND	ND	100	μg/kg
Bis(2-chloroethoxy) methane	ND	ND	ND	ND	ND	100	μg/kg
2, 4 dichlorophenol	ND	ND	ND	ND	ND	100	μg/kg
1, 2, 4 Trichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
Naphthalene	ND	ND	ND	ND	ND	100	μg/kg
4-Chloroanaline	ND	ND	ND	ND	ND	100	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	100	μg/kg
4-Chloro-3-methylphenol	ND	ND	ND	ND	ND	100	μg/kg
2-Methylnaphthalene	ND	ND	ND	ND	ND	100	μg/kg
1-Methylnaphthalene	ND	ND	ND	ND	ND	100	μg/kg
Hexachlorocyclpentadiene	ND	ND	ND	ND	ND	100	μg/kg
2, 4, 6 Trichlorophenol	ND	ND	ND	ND	ND	100	μg/kg
2, 4, 5 Trichlorophenol	ND	ND	ND	ND	ND	100	μg/kg
2-Chloronaphthalene	ND	ND	ND	ND	ND	100	μg/kg
2-Nitroanaline	ND	ND	ND	ND	ND	100	μg/kg
Dimethylphthalate	ND	ND	ND	ND	ND	100	$\mu g/kg$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Sample ID:	BC11-5	BC12-5	BC13-5	BC14-5	BC15-5		
Jones ID:	ST-14526-43	ST-14526-47	ST-14526-51	ST-14526-55	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
Acenaphthalene	ND	ND	ND	ND	ND	100	μg/kg
3-Nitroanaline	ND	ND	ND	ND	ND	100	μg/kg
Acenapthene	ND	ND	ND	ND	ND	100	μg/kg
2, 4 Dinitrotoluene	ND	ND	ND	ND	ND	100	μg/kg
Dibenzofuran	ND	ND	ND	ND	ND	100	μg/kg
2, 3, 4, 5 Tetrachlorophenol	ND	ND	ND	ND	ND	1000	μg/kg
2, 3, 4, 6 Tetrachlorophenol	ND	ND	ND	ND	ND	1000	μg/kg
Diethylphthalate	ND	ND	ND	ND	ND	100	μg/kg
Fluorene	ND	ND	ND	ND	ND	100	μg/kg
4-Chlorophenyl phenylether	ND	ND	ND	ND	ND	100	μg/kg
Diphenylamine	ND	ND	ND	ND	ND	100	μg/kg
Azobenzene	ND	ND	ND	ND	ND	100	μg/kg
4-Bromophenyl phenylether	ND	ND	ND	ND	ND	100	μg/kg
Hexachlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
Phenanthrene	ND	ND	ND	ND	ND	100	μg/kg
Anthracene	ND	ND	ND	ND	ND	100	μg/kg
Carbazole	ND	ND	ND	ND	ND	100	μg/kg
Di-n-butylphthate	ND	ND	ND	ND	ND	100	μg/kg
Fluoranthene	ND	ND	ND	ND	ND	100	μg/kg
Pyrene	ND	ND	ND	ND	ND	100	μg/kg
Benzyl butylphthalate	ND	ND	ND	ND	ND	100	μg/kg
Di(2-ethylhexyl) adipate	ND	ND	ND	ND	ND	100	μg/kg
Benz[a]anthracene	ND	ND	ND	ND	ND	100	μg/kg
Chrysene	ND	ND	ND	ND	ND	100	μg/kg
Di-n-octylphthalate	ND	ND	ND	ND	ND	100	μg/kg
Benzo[b]fluoranthene	ND	ND	ND	ND	ND	100	μg/kg
Benzo[k]fluoranthene	ND	ND	ND	ND	ND	100	μg/kg μg/kg
Benzo[a]pyrene	ND	ND	ND	ND	ND	100	μg/kg
Indeno[1, 2, 3-cd]pyrene	ND	ND	ND	ND	ND	100	μg/kg μg/kg
Dibenz[a, h]anthracene	ND	ND	ND	ND	ND	100	μg/kg μg/kg
Benzo[g, h, i]perylene	ND	ND	ND	ND	ND	100	μg/kg μg/kg
						100	μ _θ / κ _β
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limits	<u>s</u>
2-Fluorophenol	52%	61%	58%	61%	62%	30 - 120	
Phenol-D5	34%	41%	38%	39%	36%	30 - 120	
Nitrobenzene-D ₅	45%	53%	45%	41%	40%	30 - 120	
2-Fluorobiphenyl	52%	61%	63%	62%	61%	30 - 120	
p-Terphenyl_D14	70%	68%	62%	65%	77%	30 - 120	
	8270F-	8270F-	8270F-	8270F-	8270F-		
Batch:	102919-1	102919-1	102919-1	102919-1	102919-1		
Prepared:	10/29/2019	10/29/2019	10/29/2019	10/29/2019	10/29/2019		
Analyzed:	10/30/2019	10/30/2019	10/30/2019	10/30/2019	10/30/2019		

⁺⁺ m-cresol, p-cresol reported as a combined result

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/30/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

Sample ID:	Method Blank		
Jones ID:	8270F-102919- MB1	Reporting Limit	<u>Units</u>
Analytes:			
1,4 Dioxane	ND	200	μg/kg
Phenol	ND	100	μg/kg
Bis(2-chloroethyl) ether	ND	100	μg/kg
2-Chlorophenol	ND	100	μg/kg
1, 3 Dichlorobenzene	ND	100	μg/kg
1, 4 Dichlorobenzene	ND	100	μg/kg
1, 2 Dichlorobenzene	ND	100	μg/kg
o-Cresol	ND	100	μg/kg
m, p-Cresols++	ND	100	μg/kg
Hexachloroethane	ND	100	μg/kg
Nitrobenzene	ND	100	μg/kg
Isophorone	ND	100	μg/kg
Bis(2-chloroethoxy) methane	ND	100	μg/kg
2, 4 dichlorophenol	ND	100	μg/kg
1, 2, 4 Trichlorobenzene	ND	100	μg/kg
Naphthalene	ND	100	μg/kg
4-Chloroanaline	ND	100	μg/kg
Hexachlorobutadiene	ND	100	μg/kg
4-Chloro-3-methylphenol	ND	100	μg/kg
2-Methylnaphthalene	ND	100	μg/kg
1-Methylnaphthalene	ND	100	μg/kg
Hexachlorocyclpentadiene	ND	100	μg/kg
2, 4, 6 Trichlorophenol	ND	100	μg/kg
2, 4, 5 Trichlorophenol	ND	100	μg/kg
2-Chloronaphthalene	ND	100	μg/kg
2-Nitroanaline	ND	100	μg/kg
Dimethylphthalate	ND	100	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Sample ID:	Method Blank		
Jones ID:	8270F-102919- MB1	Reporting Limit	<u>Units</u>
Analytes:			
Acenaphthalene	ND	100	μg/kg
3-Nitroanaline	ND	100	μg/kg
Acenapthene	ND	100	μg/kg
2, 4 Dinitrotoluene	ND	100	μg/kg
Dibenzofuran	ND	100	μg/kg
2, 3, 4, 5 Tetrachlorophenol	ND	1000	μg/kg
2, 3, 4, 6 Tetrachlorophenol	ND	1000	μg/kg
Diethylphthalate	ND	100	μg/kg
Fluorene	ND	100	μg/kg
4-Chlorophenyl phenylether	ND	100	μg/kg
Diphenylamine	ND	100	μg/kg
Azobenzene	ND	100	μg/kg
4-Bromophenyl phenylether	ND	100	μg/kg
Hexachlorobenzene	ND	100	μg/kg
Phenanthrene	ND	100	μg/kg
Anthracene	ND	100	μg/kg
Carbazole	ND	100	μg/kg
Di-n-butylphthate	ND	100	μg/kg
Fluoranthene	ND	100	μg/kg
Pyrene	ND	100	μg/kg
Benzyl butylphthalate	ND	100	μg/kg
Di(2-ethylhexyl) adipate	ND	100	μg/kg
Benz[a]anthracene	ND	100	μg/kg
Chrysene	ND	100	μg/kg
Di-n-octylphthalate	ND	100	μg/kg
Benzo[b]fluoranthene	ND	100	μg/kg
Benzo[k]fluoranthene	ND	100	μg/kg
Benzo[a]pyrene	ND	100	μg/kg
Indeno[1, 2, 3-cd]pyrene	ND	100	μg/kg
Dibenz[a, h]anthracene	ND	100	μg/kg
Benzo[g, h, i]perylene	ND	100	μg/kg
Dilution Factor	1		
Surrogate Recoveries:		QC Limits	
2-Fluorophenol	65%	30 - 120	
Phenol-D5	39%	30 - 120	
Nitrobenzene-D ₅	53%	30 - 120	
2-Fluorobiphenyl	64%	30 - 120	
p-Terphenyl_D14	78%	30 - 120	
	8270F-		
Datah:	102919-1		
Batch: Prepared:	10/29/2019		
Analyzed:	10/29/2019		
<i>y</i> 	- 5. 5 0. 2019		

G-559

805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Converse Consultants	Report date:	11/1/2019
Client Address:	717 S. Myrtle Ave.	Jones Ref. No.:	ST-14526
	Monrovia, CA 91016	Client Ref. No.:	18-41-296-02
Attn:	Michael Van Fleet	Date Sampled:	10/23-24/2019
		Date Received:	10/24/2019
Project:	BCHD	Date Analyzed:	10/30/2019
Project Address:	520 N. Prospect Ave,	Physical State:	Soil
	Redondo Beach, CA		

EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Sample Spiked:	CLEA	N SOIL		•	
Jones ID:	8270F-102919-LCS1	8270F-102919-LCSD1			
	LCS	LCSD		Acceptable	% Recovery
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	RPD limit	Limits
Phenol	70%	56%	22.9%	35%	26 - 90
2-Chlorophenol	67%	57%	16.7%	50%	25 - 102
1,4-Dichlorobenzene	64%	54%	17.9%	50%	15 - 90
1,2,4-Trichlorobenzene	53%	60%	11.3%	50%	15 - 90
4-Chloro-3-methylphenol	63%	53%	17.6%	33%	26 - 103
Acenaphthene	84%	69%	19.3%	33%	31 - 137
2, 4-Dinitrotoluene	81%	59%	30.8%	47%	28 - 89
Pyrene	83%	70%	16.2%	36%	35 - 142
Surrogate Recovery:					
2-Fluorophenol	70%	64%			30 - 120
Phenol-D5	60%	54%			30 - 120
Nitrobenzene-D ₅	55%	57%			30 - 120
2-Fluorobiphenyl	81%	66%			30 - 120
p-Terphenyl-D ₁₄	76%	73%			30 - 120

8270F-102919-1 Batch:

LCS = Laboratory Control Sample LCSD = Laboratory Control Sample Duplicate MS = Matrix Spike

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 805-399-0060

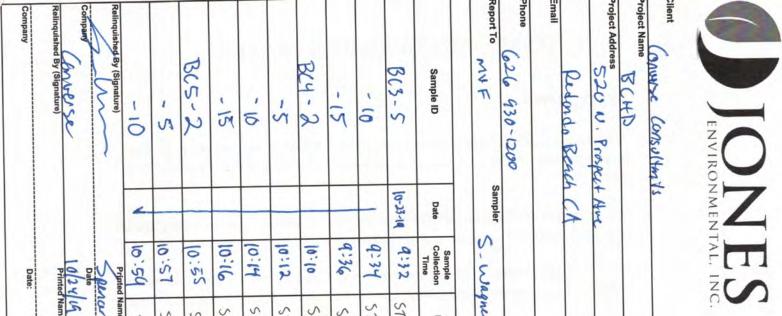
JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019 717 S. Myrtle Ave. **Client Address:** Jones Ref. No.: ST-14526 18-41-296-02 Monrovia, CA 91016 Client Ref. No.:

Attn: Michael Van Fleet **Date Sampled:** 10/23-24/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/30/2019 **Project Address:** 520 N. Prospect Ave, **Physical State:** Soil


Redondo Beach, CA

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

	Result	Expected	%Deviation	Acceptable Deviation	Pass/Fail	
CCV:	8270F-1030	019-CCV1				
Analytes:						
1, 4 Dioxane	5.45	5.00	9%	40%	PASS	
Phenol	5.35	5.00	7%	20%	PASS	
2-Chlorophenol	5.55	5.00	11%	20%	PASS	
1,4-Dichlorobenzene	5.50	5.00	10%	20%	PASS	
Nitrobenzene	5.30	5.00	6%	20%	PASS	
Isophorone	5.07	5.00	1%	20%	PASS	
1,2,4-Trichlorobenzene	5.24	5.00	5%	20%	PASS	
Naphthalene	5.40	5.00	8%	20%	PASS	
4-Chloro-3-methylphenol	4.76	5.00	5%	20%	PASS	
Acenaphthene	4.92	5.00	2%	20%	PASS	
2, 4-Dinitrotoluene	4.90	5.00	2%	20%	PASS	
Dibenzofuran	5.07	5.00	1%	20%	PASS	
Azobenzene	5.33	5.00	7%	20%	PASS	
Anthracene	5.67	5.00	13%	20%	PASS	
Carbazole	5.73	5.00	15%	20%	PASS	
Pyrene	4.98	5.00	0%	20%	PASS	
Benzo[a]Pyrene	5.18	5.00	4%	20%	PASS	
Surrogate Recovery:				<u>QC 1</u>	<u>imits</u>	
2-Fluorophenol	110%			30 -	120	
Phenol-D5	100%			30 -		
Nitrobenzene-D ₅	102%			30 -		
2-Fluorobiphenyl	117%			30 -		
p-Terphenyl-D ₁₄	104%			30 -	120	

11007 Forest Pl.

Relinquished by (organization)	Conwise	Company	BC3 2	-15	, [0		BCD - 2	1	200	200		BC1-2		Sample ID	ENVIRONME CONVERSE CONSCITANTS Set Name BC HD Redund Beach CA Redund Beach CA Redund Beach CA Sample on 8 26-930-1200 Sample Sample on 8 26-930-1200 Sample Redund Sample on 8 26-930-1200 Sam
			-	4	-	-			-			-	10-23-19	Date	Samples Samples
Date:	Printe	Date W 27	Printo	q:30	15:8	8:4q	(his	8:45	7.28	736	45C	722	730	Sample Collection Time	R & ZC
Time	Printed Name	(9) Time	Printed Name	51-14526-10	51-14526-09	80-92941-15	55-14526-0	51-14526-06	55-14526-0	51-14526-04	ST-14526-0	55-14526-02	ST-14526-01	Laboratory Sample ID	Dat
Company	Received	13:15 SEL	Received by		90	00	7		5	2	V	2	- te		Pate U-23-19 Client Project # 18-41-296-02 Sample Container / Preservative AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve BS - Plastic SOBI - Sodium Bisulfate NeOH - Methanol HCI - Hydrochloric Acid HNO3 - Nitric Acid O - Other (See Notes)
	Received by Laboratory (Signature)		Received by (Signature)	1AS 26bC	1R)	1 165	TENC	2 GNC	7540	_	1	125	ZEAC.	Sample	vative
	(ainte)	natura)		×			×	×	~	F	-	F	7	Soil (S),	In Matrix: Sludge (SL), Aqueous (A), Free Product (FP) Rush 24 Hours Rush 72 Hours
		>1		×			×	×	×				Y	801	und Rate Atten 4 Hours 8 Hours
				×		-	×	×	×	+	+	+	7		08 74714 Seques
Date		10/24/2	Kevin	×				×					,		nalysi
		10/24/2019	1											82	70C EDD. EDF.
1			Horable	-		-	-	-	+	+	-	+	+		Analysis Requested
Time		1316	L. le								+		+		Report Options EDD EDF* - 10% Surcharge *Global ID aquested
						+					+		1	Numi	ber of Containers
	analyses have been reqested, and the information provided herein is correct and accurate.	Client signature on this Chain of Custody form	Total Number of Containers		Hora	11000				HoCo	TeCD.	How		Notes & Special Instructions	100 N L TL 6 F

provided herein is correct and accurate.		Time		Date					Company	Time	*	Date:		
constitutes acknowledgement that the above analyses have been reqested, and the information	anal		Printed Name	Prir			nature)	Received By Laboratory (Signature)	Received By L		Printed Name	Prin		By (Signature)
Client signature on this Chain of Custody form	Ω	1315	10/24/2019	lo					JEL	13:15	24/19	10/2		barerse
Total Number of Containers		Horaler	evin					Rignature)	Received by (Signature)	Jugar	Printed Name	V Prince		By (Signature)
HOLD					-	-	4	3	4	-14526-20	51	10:54	4	-10
			-		X	×	-	7896		-14526-19	-15	10:57		S
			×	×	X	×		J. Carc		-14526-18	57	10:55		BUS-2
A10H					-	-		-AS		14526-17	57-	10-16		-18
HOID						-		1 NS		14521-16	51.	10:14		٠ ١٥
					×	X		1860		-14526-12	57-	10:12		5-
			×	×	~	×		7.80C		-14526-14	51-	10:10		R4-2
14017								IAS		14526-13	51-	95:36		-15
14079						-		SVI	_	5T-14626-12	57-	hesp	_	0) -
G-563					×	~	5	1 Guc	ileputs	ST-14526-11	57-1	9:32	10-23-19	863-5
Notes & Special Instructions	Numbe		814	808	-	826	Soil (S), S	ple	Preservative	Laboratory Sample ID		Sample Collection Time	Date	Sample ID
	er of Conta				B / 7471		Sludge (SL), A	e Matrix:	HCl - Hydrochloric Acid HNO3 - Nitric Acid O - Other (See Notes)	HC1- H HN03- O- Oth	Wagner	N . W	Sampler	MUF
	iners				A		queous (A		P - Plastic SOBI - Sodium Bisulfate MeOH - Methanol	P - Plastic SOBI - Soo MeOH - M				026 930-1200
Sample Condition as Recieved: Chilled pyes no Sealed yes no							A), Free Product (FF	946	AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve G - Glass AB - Amber Bottle	AS - Acett SS - Stain BS - Brast G - Glass AB - Amb			h CA	Redords Beach
0 00		Analysis Requested	llysis Re	- An		-	<u>P)</u>	servative	Sample Container / Preservative Abbreviations	Sample			+ Auc	520 U. Prospect
10 #		Report Options EDD EDF* - 10% Surcharge *Global ID		Turn Around Requested: Immediate Attention Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal	Attentions ours ours ours ours	urn Around Requestion Immediate Attention Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal	□ Immedia □ Rush 24 □ Rush 48 □ Rush 72		te 0 123 14 ent Project #	Date 10/23/10 Client Project #			73	BCHD BCHD
n-of-Custody Record	stoc	of-Cus	J-C	Chai	7				11007 Forest Pl. Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com	11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com	NO.		ZMEN	JONNENTAL,
])												

11007 Forest Place Santa Fe Springs, CA 90670 (714) 449-9937 (562) 646-1611 www.jonesenv.com

Purge Rate:	□EDD □EDF	æ	lime				Company		Time			Company
Clean Project # Clean Proj	above under the Terms and Conditions set forth on the back hereof.	The state of the s	Date			Laboratory (signature)	Received by		Date			Relinquished by (signature)
Purge Purg	The delivery of samples and the signature on this Chain of Custody form constitutes authorization to perform the analyses specified	5	Time				SEL.		Time			Company
Purge Purg	Total Number of Containers	halia	Date			(signature)	2 Received by		Date			Relinquished by (signature)
Purge Purge Purge Number Purge Number Purge Number Purge Purge Number Purge Purge Number Purge Purge Number Purge Purge Purge Number Purge				X	4	57-14526-30		13:20	æ			
Purge Purge Purge Date Collection Analysis Requested ST-145	HOLD					55-14526-25		12:51				-15
1023 A	1400					57-14526-28		12:49				
Client Project # Surple Rate:			×	1.		55-14626-27		12:47				
Client Project # Client Project # Shut in Test: Y / N Shut		+		X		21-14526-26		12:45				3(7-2
Client Project # Client Project # Shut in Test Y / N See Comming See	ATA					51-14526-26		11:51				
Client Project # Client Project # Shut in Test Y / N Signature Sample Condition Sample Condition Sample Volume Purge Date Collection Sample S	H01D					55-14526-24		11:49				- 10
Client Project # Client Project # Strut in Test Y / N Stru			×	X		ST-14526-23		11:47				2,
Client Project # Shut in Test Y / N Sample Condition as Received: Chilled Yes Sample Collection Analysis Sample Collection Analysis Sample Samp		-	-		_	51-14626-22		11:45	_			BC6-2
Client Project # Chiling Chi	Hord				N	-		11:01	10/25/19			
Purge Number: 1P 3P 7P 10P Analysis Requested ST - 14 5: Client Project # Shut in Test Y N Sign Sign Shut in Test Y N Sign Sign Shut in Test Y N Sign Shut in Test Shut i		Magn	6010	826	Sampi Soil (S		Sample Analysis Time	Sample Collection Time	Date	Purge Volume		Sample ID
Purge Number: ☐ 1P ☐ 3P ☐ 7P ☐ 10P Analysis Requested Purge Rate: ☐ 1P ☐ 3P ☐ 7P ☐ 10P Analysis Requested Purge Rate: ☐ 1P ☐ 3P ☐ 7P ☐ 10P Analysis Requested Frespect Awc Itum Around Requested: ☐ n-propanol Paush: ☐ 1,1-DFA Analysis Requested Paush: ☐ 1,1-DFA Analysis Requested Paush: ☐ 24 ☐ 48 ☐ 72 ☐ Helium	Sealed □ yes	814	0/747	OB	le Matrix			☐ Mobile L				roject Contact
Purge Number: □1P □3P □7P □10P Analysis Requested Client Project # Shut in Test Y / N Paracer: Turn Around Requested: □ n-propanol □ Immediate Attention □ n-pentane Purge Number: □1P □3P □7P □10P Analysis Requested Paracer: Paracer: Paracer: □ n-propanol □ n-pentane	ainers	Id		(SL), Aqu			48 72	24 O		CA	+	
10 23 19				leous (A)		ropanol	equested: te Attention	Turn Around Re		٤		
Purge Number: ☐ 1P ☐ 3P ☐ 7P ☐ 10P Analysis Requested	Page 2 of C		OII Gas (S	_		Y / N	6-02	Client Project #				PCHO
		Analysis Requ	(G)	□ 10P	P □ 7P	01P 0		1023/19				ient

11007 Forest Place Santa Fe Springs, CA 90670 (714) 449-9937 (562) 646-1611 www.jonesenv.com

authorization to perform the analyses specified above under the Terms and Conditions set forth on the back hereof.											
authorization to perform the analyses st	Date				Received by Laboratory (signature)	Received by		Date			Relinquished by (signature)
The delivery of samples and the signature on this Chain of Custody form constitutes	1315					SE C	Time (3'.15'	Tim			Company
	10/27/19				(signature)	Received by (signature)		Date		,	Relinquished by (signature)
HOLD				4	57-14626-40		8:32	_			- 10
		×	×	4	21-14626-3		8:28				1 57
	×	×	×		86-92541-15		8:24				BC10 - 2
HOLD					57-14526-37		7:36				51-
HOLD					55-14526-26		7:34				010
		X	×		57-14526.35		7:32	_			. 5
	×	X	×		ST-14526-34		7:30	10/24/19			BC9 - 2
HACD					51-14626-33		13:26	+			- 15
Hoco					57-14526-32		13:24	_			-10
		×	×	N	55-14526-31		13:22	b/23/19			BC8-5
	SO Magh	Sample Soil (S	Soil (S	Samo	Laboratory Sample Number	Sample Analysis Time	Sample Collection Time	Date	Purge Volume	Purge Number	Sample ID
1076	G/Z	547	Matrix:				Mobile Lab				Project Contact MVF
as Received: as Received: as Received:	17/4		(SL), A-		Helium	48 72	24 48 72			N. A.	Redundo Beach
		eous (A)	\		n-propanol	equested: te Attention	Turn Around Requested: Immediate Attention		8	pect A	Project Address 520 N. Prospect Ave
Page 4 of	1	Soil Gas (S			Shut in Test Y / N Tracer:	96-02	18-41-296-02				Project Name BCHD
Analysis Requested	-	P (G)	⊒7P □10P	GC/min	Purge Number: ☐ 1P ☐ 3P	DI PC	10/23 - 10/24/19				Client (SINVES)

AMERICAN ENVIRONMENTAL TESTING LABORATORY

2834 NORTH NAOMI ST. BURBANK, CALIFORNIA 91504 DHS # 1541 LACSD# 10181 TEL (888) 288-AETL (818) 845-8200 FAX (818) 845-8840 www.aetlab.com

CHAIN OF CUSTODY RECORD

115899

Time:	Date: T	Time:	75	Date:	Time:	TI.	Date:		ECIFY)	OTHER (PLEASE SPECIFY)	OTHE	1 3 DAYS			_
	Printed Name:		Printed Name:	Print			Printed Name:						RUSH	NORMAL	_
	Signature:		Signature:	Sign			Signature:	30		COPY		0			
ω	LABORATORY:	ĺ	CEIVED BY:		-	373	HECEIVED B	REQUIRED		DATA DELIVERABLE	DATA	TIME	TURN AROUND TIME	TURN A	
lime:		Time: 1515	Date: 10/24/15		Time: 13:15	19	Date: 16 24		Z	CCEPTED Y/N	SAMPLES ACCEPTED	/N	COND. Y/N	RECEIVED IN GOOD COND.	70
	d Name:	Kle	Printed Name: Hoakle		Lagre	Senso	Printed Name:		NA	NTACT Y/N/NA	SAMPLES INTACT		Y/N/NA	CUSTODY SEALS Y	0.1
	Signature:		Signature:	Sign		5	Signature:		A/N/NA		PROPERLY COOLED	RS	CONTAINER	TOTAL NUMBER OF CONTAINERS	-11
ņ	netindoloneo o :	2	RELINQUISHED BY			TED BY	SAMPLER:		BORATO	D BY LAE	BE FILLED BY LABORATORY	RECEIPT - TO		SAMPLE	
	DEL MOLIGUED BY.		×		X	X		JENC -	4	M:17	-	ST-14676 -65	571	S-	-
			×	×	+	×	<	2 EU	2	11:15		456 54	51-14626	" BUH-2	- 11
	107.Þ							IAS		10:46		ST-14626 - 53	57-11	51-	73
	1700							135		hh:0		1626 -62	57-14626	-10	- 5
			×		X	×		12/200		10:42		15- 929 H-15	37-14	S-	d
			×	X	X	×		IAS V		10:40		ST-1484-50	57-10	13C13 - 2	16
	14070							E		0:16		84-926H-15	55-11	51-	9
	Apro							()		10:14		1624 - 48	25-14621	-10	on
			×	×	×	×		2 Parc		51:0		24- 9691	25-14626	2-	7
G-5			×	×	×	×		1 KSUC		D: (O		1826-46	Sr-14526	BC12 - 2	25
566	HOLD							IAS		d:40		526 -415	ST-14526	- 151	O+
	A101							145		4:38		144-7461	24-1497 C	-10	4
			×	×	×	×		100 C		9:36		57-14626 - 43	ST-14	5-	(a)
			~	×	X	×	_	2 AVC		d:34	-	57-14676-42	55-14	B(11 - 2	ria .
	Hoch					icepados	164	1 jar	SUIL	8:36	10/24/19	5T-14526-41	ST-1	BC10-15	-
				8	8		R ZE PRES	CONTAINER NUMBER/SIZE	MATRIX	TIME	DATE	LAB ID		SAMPLE ID	
			270	081	115	60					Beach	Redordo 8	R	ADDRESS	D
	(Д		B			PO#	4	Prospect Are	2,	520	SITE NAME	D W
	ST-14526			IM	7/ 4	ř	8-41-226-02	#	PROJECT				BCHD	PROJECT NAME	D
COMMENTS	TEST INSTRUCTIONS & COMMENTS				2		0 1200	626 930	FAX		Avenue		175 mystle	COMPANY ADDRESS	C
	ago		DECLIESTE	VCIC				MUT	BLONE			Consultants	100	COMPANT CONVEYE	(
200	Page 7			5	TL JOB No	AET			PROJECT MANAGER	PROJ				VINDANV	2

AMERICAN ENVIRONMENTAL TESTING LABORATORY

2834 NORTH NAOMI ST. BURBANK, CALIFORNIA 91504 DHS # 1541 LACSD# 10181 TEL (888) 288-AETL (818) 845-8200 FAX (818) 845-8840 www.aetlab.com

CHAIN OF CUSTODY RECORD

115898

	Date: Time:	Time:		Date:		Time:		Date:	BAL ID)	OTHER (PLEASE SPECIFY)	00	2 DAYS		
	Printed Name:		ame:	Printed Name:			Printed Name:	Printe		COPY	□ PDF	USH SAME DAY	NORMAL RUSH	
	Signature:			Signature:			ture:	Signature:						
ω	LABORATORY:	Ŋ		RECEIVED BY:	#		RECEIVED BY:	REC	BLE REG	DATA DELIVERABLE REQUIRED	DATA	IND TIME	TURN AROUND TIME	
	Date: Time:	Time: 1515	3	Date:	13:15	큐	olzyli	Date:	Z	CEPTED Y/N	SAMPLES ACCEPTED	D. Y/N	RECEIVED IN GOOD COND. Y/N	D
	Printed Name:	Me	Mor	Printed Name;	Negras	-	Printed Name: Spenus	Printe	AA	ACT Y/N/	SAMPLES INTACT Y/ N / NA	NA	CUSTODY SEALS Y/N/NA	0
	Signature:		1	Signature:	1	1	Ture:	Signature	Y/N/NA		PROPERLY COOLED	AINERS	TOTAL NUMBER OF CONTAINERS	ना
ω	RELINQUISHED BY:	is	RELINQUISHED BY:	RELINQ	-		RELINQUISHED BY SAMPLER:		ORATO	FILLED BY LABORATORY	BE FILLED	RECEIPT - TO	SAMPLE	
														5 4
														12
				+										12 11
				+										10 9
														00
G-:	1970			+		I	4	185	<	X11:56	4	57-14626-61	-IS	0
567	(400)							IRS		HS:II		57-14516-60	-10	Ut
			×		× ×	×		1A5/2800		211152		55-14526-59	-5	4
				X	X	×		1 K5/26wc		11:50		85-14641-18	BC15- 2	Lo
	15LD							185	-	41121	-	57-14526-57	75	2
	Horn						icendes	IA	2010	NO BEAM	10/24/19	57-14526-56	BC14-10	-
			82	80	601	8	PRES.	CONTAINER NUMBER/SIZE	MATRIX	TIME	DATE	LAB ID	SAMPLE ID	
			700	811	15A	260					Ridondo Beach	Rudond	ADDRESS	A
			-	4	7747	OB	,		PO #		peet Ave	520 N. Prospect Ave	SITE NAME	N S
					'IA		6-02	CT# 18-41-296-02	PROJECT #			HD O	PROJECT NAME BCHD	P
MMENTS	TEST INSTRUCTIONS & COMMENTS		ANALYSIS REQUESTED	SISHE	ANALY		1200	626 930-1200	FAX		trenve	ite	COMPANY ADDRESS	CC
of of	Page 6				L JOB No.	AEIL		MUF	PROJECT MANAGER	PROJ		use	ONU CONU	C
-														1

01 November 2019

Colby Wakeman
Jones Environmental
11007 Forest Place
Santa Fe Springs, CA 90670

RE: BCHD

Enclosed are the results of analyses for samples received by the laboratory on 10/25/19 14:27. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeff Lee

Project Manager

Santa Fe Springs CA, 90670

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Reported:

Jones Environmental Project: BCHD 11007 Forest Place Project Number: [none]

Project Manager: Colby Wakeman 11/01/19 12:05

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BC1-2	T193739-01	Soil	10/23/19 07:30	10/25/19 14:27
BC2-2	T193739-02	Soil	10/23/19 08:45	10/25/19 14:27
BC3-2	T193739-03	Soil	10/23/19 09:30	10/25/19 14:27
BC4-2	T193739-04	Soil	10/23/19 10:10	10/25/19 14:27
BC5-2	T193739-05	Soil	10/23/19 10:55	10/25/19 14:27
BC6-2	T193739-06	Soil	10/23/19 11:45	10/25/19 14:27
BC7-2	T193739-07	Soil	10/23/19 12:45	10/25/19 14:27
BC8-2	T193739-08	Soil	10/23/19 13:20	10/25/19 14:27
BC9-2	T193739-09	Soil	10/24/19 07:30	10/25/19 14:27
BC10-2	T193739-10	Soil	10/24/19 08:24	10/25/19 14:27
BC11-2	T193739-11	Soil	10/24/19 09:34	10/25/19 14:27
BC12-2	T193739-12	Soil	10/24/19 10:10	10/25/19 14:27
BC13-2	T193739-13	Soil	10/24/19 10:40	10/25/19 14:27
BC14-2	T193739-14	Soil	10/24/19 11:15	10/25/19 14:27
BC15-2	T193739-15	Soil	10/24/19 11:50	10/25/19 14:27

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 1 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

DETECTIONS SUMMARY

Sample ID: BC1-2 T193739-01 Laboratory ID: No Results Detected Sample ID: BC2-2 Laboratory ID: T193739-02 No Results Detected Sample ID: BC3-2 Laboratory ID: T193739-03 No Results Detected Sample ID: BC4-2 T193739-04 Laboratory ID: No Results Detected Sample ID: BC5-2 Laboratory ID: T193739-05 **No Results Detected** Sample ID: BC6-2 Laboratory ID: T193739-06 No Results Detected

Jeff Lee, Project Manager

SunStar Laboratories, Inc.

Page 2 of 22

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

Sample ID: BC7-2 Laboratory ID: T193739-07

No Results Detected

Sample ID: BC8-2 Laboratory ID: T193739-08

No Results Detected

Sample ID: BC9-2 Laboratory ID: T193739-09

No Results Detected

Sample ID: BC10-2 Laboratory ID: T193739-10

No Results Detected

Sample ID: BC11-2 Laboratory ID: T193739-11

No Results Detected

Sample ID: BC12-2 Laboratory ID: T193739-12

No Results Detected

Sample ID: BC13-2 **Laboratory ID:** T193739-13

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 3 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

Sample ID: BC14-2 Laboratory ID: T193739-14

No Results Detected

Sample ID: BC15-2 Laboratory ID: T193739-15

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 4 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC1-2 T193739-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA Met	hod 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	10/31/19	8141a	
Mevinphos	ND	0.0050	"	**	**	"	W	**	
Demeton-s	ND	0.010	"	11	**	"	W	11	
Ethoprophos	ND	0.0050	"	11	**	"	W	11	
Phorate	ND	0.010	"	**	**	**	II	11	
aled	ND	0.0050	"	"	**	**	H	11	
Sulfotep	ND	0.010	"	"	**	**	H	11	
Diazinon	ND	0.0050	"	"	**	**	H	11	
Disulfoton	ND	0.0050	"	"	**	**	H	11	
Demeton-o	ND	0.010	"	"	**	**	11	tt.	
Dimethoate	ND	0.0050	**	"	**	**	11	**	
Ronnel	ND	0.010	**	"	**	**	11	**	
Merphos	ND	0.010	**	"	**	**	11	**	
Chlorpyrifos	ND	0.0050	**	"	**	**	**	**	
Fenthion	ND	0.0050	**	"	**	**	"	**	
Trichloronate	ND	0.0050	"	"	**	"	11	**	
Methyl parathion	ND	0.0050	**	"	**	"	"	**	
Malathion	ND	0.010	"	"	**	"	n.	**	
Tokuthion (Prothiofos)	ND	0.0050	"	n	"	"	11	n	
Parathion	ND	0.0050	"	"	**	"	n	**	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	"	"	"	"	**	
Bolstar	ND	0.0050	"	"	"	"	"	**	
Fensulfothion	ND	0.0050	"	"	**	"	n.	"	
EPN	ND	0.0050	"	"	**	"	n.	"	
Azinphos methyl	ND	0.010	"	"	**	"	n.	"	
Coumaphos	ND	0.0050	"	**	**	"	H .	"	
Surrogate: Tributylphosphate		97.6 %	40	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 5 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC2-2 T193739-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	10/31/19	8141a	
Mevinphos	ND	0.0050	"	"	"	"	11	"	
Demeton-s	ND	0.010	"	"	**	"	11	**	
Ethoprophos	ND	0.0050	11	"	**	"	11	"	
Phorate	ND	0.010	11	"	**	**	11	"	
aled	ND	0.0050	11	"	"	**	11	"	
Sulfotep	ND	0.010	11	"	**	**	**	"	
Diazinon	ND	0.0050	**	"	**	**	**	"	
Disulfoton	ND	0.0050	11	"	**	**	**	"	
Demeton-o	ND	0.010	**	"	"	"	"	"	
Dimethoate	ND	0.0050	**	"	"	"	"	"	
Ronnel	ND	0.010	**	"	"	"	II.	T T	
Merphos	ND	0.010	"	"	"	"	II.	"	
Chlorpyrifos	ND	0.0050	"	**	"	"	II.	"	
Fenthion	ND	0.0050	"	"	**	"	H.	"	
Trichloronate	ND	0.0050	"	**	**	"	H.	"	
Methyl parathion	ND	0.0050	"	**	**	"	H.	"	
Malathion	ND	0.010	"	**	**	Ħ	H.	"	
Tokuthion (Prothiofos)	ND	0.0050	"	**	**	Ħ	H	"	
Parathion	ND	0.0050	"	**	u	Ħ	H	"	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	**	**	Ħ	H	"	
Bolstar	ND	0.0050	"	**	**	Ħ	H	"	
Fensulfothion	ND	0.0050	"	**	**	**	H	"	
EPN	ND	0.0050	"	**	**	**	H	"	
Azinphos methyl	ND	0.010	**	"	Ħ	Ħ	H	TI .	
Coumaphos	ND	0.0050	"	**	**	11	II	TT .	
Surrogate: Tributylphosphate		105 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 6 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC3-2 T193739-03 (Soil)

Analyte Re	Reportii sult Lin		Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunSta	r Laborato	ries, Inc.					
Organophosphorus Pesticides by EPA Method 8141	A							
Dichlorvos	ND 0.005	0 mg/kg	1	9103026	10/30/19	10/31/19	8141a	
Mevinphos	ND 0.005	0 "	"	"	"	"	"	
Demeton-s	ND 0.01	0 "	"	"	"	"	"	
Ethoprophos	ND 0.005	0 "	"	"	**	"	"	
Phorate	ND 0.01	0 "	"	"	**	"	"	
aled	ND 0.005	0 "	**	"	**	H	"	
Sulfotep	ND 0.01	0 "	**	"	**	H	"	
Diazinon	ND 0.005	0 "	**	"	**	H	"	
Disulfoton	ND 0.005	0 "	**	**	**	H.	TT .	
Demeton-o	ND 0.01	0 "	11	**	**	H.	**	
Dimethoate	ND 0.005	0 "	"	**	**	II	11	
Ronnel	ND 0.01	0 "	"	17	**	II	11	
Merphos	ND 0.01	0 "	"	17	11	II	11	
Chlorpyrifos	ND 0.005	0 "	"	17	11	H	11	
Fenthion	ND 0.005	0 "	"	17	11	H	11	
Trichloronate	ND 0.005	0 "	"	17	**	H	11	
Methyl parathion	ND 0.005	0 "	"	"	"	11	"	
Malathion	ND 0.01	0 "	"	"	"	11	"	
Tokuthion (Prothiofos)	ND 0.005	0 "	"	"	**	"	"	
Parathion	ND 0.005	0 "	"	"	**	"	**	
Stirophos (Tetrachlorvinphos)	ND 0.005	0 "	"	"	**	"	**	
	ND 0.005	0 "	"	"	**	H.	"	
Fensulfothion	ND 0.005	0 "	"	"	**	"	"	
EPN	ND 0.005	0 "	**	"	**	H	"	
Azinphos methyl	ND 0.01	0 "	11	**	**	H.	**	
1	ND 0.005		**	**	**	W	**	
Surrogate: Tributylphosphate	103	% 40	0-125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 7 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC4-2 T193739-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA Mo	ethod 8141A								
Dichlorvos	ND	0.0062	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0062	"	"	**	Ħ	II .	"	
Demeton-s	ND	0.012	"	"	**	Ħ	II .	**	
Ethoprophos	ND	0.0062	"	"	**	Ħ	II .	**	
Phorate	ND	0.012	"	"	**	Ħ	"	**	
Naled	ND	0.0062	**	"	**	**	11	"	
Sulfotep	ND	0.012	**	"	**	**	"	"	
Diazinon	ND	0.0062	**	"	**	**	"	"	
Disulfoton	ND	0.0062	**	"	**	**	"	"	
Demeton-o	ND	0.012	**	"	**	**	"	"	
Dimethoate	ND	0.0062	"	**	"	**	"	**	
Ronnel	ND	0.012	"	**	"	**	"	**	
Merphos	ND	0.012	"	11	"	***	II .	11	
Chlorpyrifos	ND	0.0062	"	11	"	17	n.	11	
Fenthion	ND	0.0062	"	11	"	17	n.	11	
Trichloronate	ND	0.0062	"	11	"	**	III	11	
Methyl parathion	ND	0.0062	"	"	**	Ħ	II .	11	
Malathion	ND	0.012	"	"	**	Ħ	II .	11	
Tokuthion (Prothiofos)	ND	0.0062	"	**	"	**	m .	11	
Parathion	ND	0.0062	"	"	**	Ħ	H .	tt.	
Stirophos (Tetrachlorvinphos)	ND	0.0062	"	"	**	Ħ	II .	ti .	
Bolstar	ND	0.0062	"	"	**	Ħ	II .	n .	
Fensulfothion	ND	0.0062	"	"	**	**		· ·	
EPN	ND	0.0062	**	"	**	**	"	u,	
Azinphos methyl	ND	0.012	**	"	**	**	"	u,	
Coumaphos	ND	0.0062	"	"	**	"	"	u,	
Surrogate: Tributylphosphate		113 %	40	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 8 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC5-2 T193739-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	n .	"	**	"	"	"	
Demeton-s	ND	0.010	"	"	**	**	"	"	
Ethoprophos	ND	0.0050	"	11	**	**	"	"	
Phorate	ND	0.010	n	"	**	**	"	"	
Naled	ND	0.0050	n	"	**	**	"	"	
Sulfotep	ND	0.010	n	"	**	**	"	"	
Diazinon	ND	0.0050	n	"	**	**	"	"	
Disulfoton	ND	0.0050	n	"	**	**	"	"	
Demeton-o	ND	0.010	n	"	**	**	"	"	
Dimethoate	ND	0.0050	"	"	**	**	"	"	
Ronnel	ND	0.010	"	"	**	**	"	"	
Merphos	ND	0.010	"	"	**	**	"	"	
Chlorpyrifos	ND	0.0050	"	"	**	**	n .	"	
Fenthion	ND	0.0050	"	"	**	**	n .	"	
Trichloronate	ND	0.0050	"	"	**	**	n .	"	
Methyl parathion	ND	0.0050	"	"	**	**	n .	"	
Malathion	ND	0.010	u	"	**	**	n .	"	
Tokuthion (Prothiofos)	ND	0.0050	u	"	**	**	n .	"	
Parathion	ND	0.0050	u	"	**	**	n .	"	
Stirophos (Tetrachlorvinphos)	ND	0.0050	u	"	**	**	n .	"	
Bolstar	ND	0.0050	"	"	**	**	H .	· ·	
Fensulfothion	ND	0.0050	"	"	**	**	H .	· ·	
EPN	ND	0.0050	"	"	**	**	H .	· ·	
Azinphos methyl	ND	0.010	"	"	n	n	II .	TI .	
Coumaphos	ND	0.0050	"	"	**	n	II .	TT .	
Surrogate: Tributylphosphate		108 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 9 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC6-2 T193739-06 (Soil)

	SunStar L	aboratori											
SunStar Laboratories, Inc.													
rganophosphorus Pesticides by EPA Method 8141A													
ichlorvos ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a						
Ievinphos ND	0.0050	"	**	"	"	n	TI .						
emeton-s ND	0.010	"	**	"	"	n	u .						
thoprophos ND	0.0050	"	**	"	"	n	ti .						
horate ND	0.010	"	**	n	"	n	**						
aled ND	0.0050	"	**	n	"	n	Ħ						
ulfotep ND	0.010	"	**	n	"	H	Ħ						
iazinon ND	0.0050	"	**	n	"	H	Ħ						
isulfoton ND	0.0050	"	**	n	· ·	и	Ħ						
emeton-o ND	0.010	"	"	n	n	II	Ħ						
imethoate ND	0.0050	"	"	TT .	TT .	II	Ħ						
onnel ND	0.010	"	"	n	TT .	11	"						
Ierphos ND	0.010	"	"	n	Ħ	II	Ħ						
hlorpyrifos ND	0.0050	"	"	n	17	II	Ħ						
enthion ND	0.0050	"	"	n	17	II	Ħ						
richloronate ND	0.0050	"	"	n	17	II	Ħ						
Iethyl parathion ND	0.0050	"	"	n	"	II	ti .						
Ialathion ND	0.010	"	"	"	"	11	"						
okuthion (Prothiofos) ND	0.0050	"	"	"	"	11	"						
arathion ND	0.0050	"	"	"	"	"	"						
tirophos (Tetrachlorvinphos) ND	0.0050	11	"	"	"	"	"						
olstar ND	0.0050	"	"	"	"	"	"						
ensulfothion ND	0.0050	"	"	**	"	"	"						
PN ND	0.0050	"	**	**	"	"	"						
zinphos methyl ND	0.010	"	**	**	"	II .	**						
oumaphos ND	0.0050	"	**	n	"	ıı	**						
rrogate: Tributylphosphate	114 %	40-1	125	"	"	"	"						

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 10 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC7-2 T193739-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	"	**	**	**	и	"	
Demeton-s	ND	0.010	"	**	**	**	и	"	
Ethoprophos	ND	0.0050	"	**	**	"	W	n	
Phorate	ND	0.010	"	**	**	**	н	"	
aled	ND	0.0050	"	**	**	**	н	n	
Sulfotep	ND	0.010	"	**	**	**	и	Ħ	
Diazinon	ND	0.0050	"	**	**	**	и	Ħ	
Disulfoton	ND	0.0050	"	**	**	**	и	Ħ	
Demeton-o	ND	0.010	"	**	**	**	и	Ħ	
Dimethoate	ND	0.0050	"	**	11	**	II	Ħ	
Ronnel	ND	0.010	"	"	"	"	н	Ħ	
Merphos	ND	0.010	"	n	"	"	н	Ħ	
Chlorpyrifos	ND	0.0050	"	n	"	"	н	Ħ	
Fenthion	ND	0.0050	"	n	"	"	н	Ħ	
Trichloronate	ND	0.0050	"	"	"	"	н	Ħ	
Methyl parathion	ND	0.0050	"	"	"	"	н	Ħ	
Malathion	ND	0.010	II .	"	**	"	н	Ħ	
Tokuthion (Prothiofos)	ND	0.0050	II .	"	**	**	н	**	
Parathion	ND	0.0050	II .	"	**	**	н	**	
Stirophos (Tetrachlorvinphos)	ND	0.0050	n .	"	**	**	н	**	
Bolstar	ND	0.0050	"	"	**	**	n	"	
Fensulfothion	ND	0.0050	"	"	**	**	n	"	
EPN	ND	0.0050	"	"	**	**	n n	"	
Azinphos methyl	ND	0.010	"	**	**	**	H	**	
Coumaphos	ND	0.0050	"	**	**	**	W	"	
Surrogate: Tributylphosphate		108 %	40-1	125	"	"	"	n	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 11 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC8-2 T193739-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	"	"	**	"	11	"	
Demeton-s	ND	0.010	"	"	**	**	11	"	
Ethoprophos	ND	0.0050	"	"	**	**	11	"	
Phorate	ND	0.010	"	"	**	**	II .	"	
aled	ND	0.0050	"	"	**	**	H	"	
Sulfotep	ND	0.010	"	"	**	**	H	"	
Diazinon	ND	0.0050	"	"	**	**	H	"	
Disulfoton	ND	0.0050	"	"	**	**	H	**	
Demeton-o	ND	0.010	"	"	**	**	H	**	
Dimethoate	ND	0.0050	"	"	**	**	H	17	
Ronnel	ND	0.010	"	"	**	**	II	17	
Merphos	ND	0.010	"	11	11	11	II.	17	
Chlorpyrifos	ND	0.0050	"	11	**	**	II	17	
Fenthion	ND	0.0050	"	"	**	**	H	11	
Trichloronate	ND	0.0050	"	"	**	**	H	11	
Methyl parathion	ND	0.0050	"	11	**	**	H	11	
Malathion	ND	0.010	"	n	**	**	H	11	
Tokuthion (Prothiofos)	ND	0.0050	"	n	**	**	H	11	
Parathion	ND	0.0050	"	n	**	Ħ	11	tt.	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	"	**	**	11	"	
Bolstar	ND	0.0050	"	"	**	**	11	"	
Fensulfothion	ND	0.0050	"	"	**	**	"	"	
EPN	ND	0.0050	"	"	**	**	"	u,	
Azinphos methyl	ND	0.010	"	"	**	**	"	u,	
Coumaphos	ND	0.0050	"	"	**	**	11	u,	
Surrogate: Tributylphosphate		110 %	40-	125	"	"	"	n .	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 12 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC9-2 T193739-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Mevinphos	ND	0.050	"	"	**	"	n n	"	R-07
Demeton-s	ND	0.10	"	"	**	**	н	"	R-07
Ethoprophos	ND	0.050	"	"	**	**	H	"	R-07
Phorate	ND	0.10	"	"	**	**	H	"	R-07
aled	ND	0.050	**	"	**	**	H	"	R-07
Sulfotep	ND	0.10	"	"	**	**	"	n	R-07
Diazinon	ND	0.050	**	"	**	**	"	"	R-07
Disulfoton	ND	0.050	"	"	**	**	"	n	R-07
Demeton-o	ND	0.10	"	"	**	**	"	"	R-07
Dimethoate	ND	0.050	"	"	**	**	H	**	R-07
Ronnel	ND	0.10	"	"	**	**	H	17	R-07
Merphos	ND	0.10	"	11	**	**	n	17	R-07
Chlorpyrifos	ND	0.050	"	11	11	11	II	17	R-07
Fenthion	ND	0.050	"	11	**	**	n	17	R-07
Trichloronate	ND	0.050	"	11	**	**	n	17	R-07
Methyl parathion	ND	0.050	"	11	**	**	n	**	R-07
Malathion	ND	0.10	"	11	**	**	n	**	R-07
Tokuthion (Prothiofos)	ND	0.050	"	11	**	**	H	**	R-07
Parathion	ND	0.050	"	11	n	n	H.	**	R-07
Stirophos (Tetrachlorvinphos)	ND	0.050	"	**	**	**	H	n	R-07
Bolstar	ND	0.050	"	**	**	Ħ	H	n	R-07
Fensulfothion	ND	0.050	"	**	**	Ħ	H	n	R-07
EPN	ND	0.050	"	**	n	n	и	n	R-07
Azinphos methyl	ND	0.10	"	"	**	**	н	n	R-07
Coumaphos	ND	0.050	"	"	**	**	и	TT .	R-07
Surrogate: Tributylphosphate		117 %	40	125	n .	n	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 13 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC10-2 T193739-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Mevinphos	ND	0.050	"	"	**	"	и	"	R-07
Demeton-s	ND	0.10	"	"	**	"	H	"	R-07
Ethoprophos	ND	0.050	"	"	**	**	H	"	R-07
Phorate	ND	0.10	"	"	**	**	H	"	R-07
aled	ND	0.050	**	"	**	**	H	"	R-07
Sulfotep	ND	0.10	**	"	**	**	11	"	R-07
Diazinon	ND	0.050	**	"	**	**	"	"	R-07
Disulfoton	ND	0.050	"	"	**	"	"	"	R-07
Demeton-o	ND	0.10	"	**	**	"	n	**	R-07
Dimethoate	ND	0.050	"	**	**	"	n	**	R-07
Ronnel	ND	0.10	"	**	**	"	n	11	R-07
Merphos	ND	0.10	"	11	**	"	n	17	R-07
Chlorpyrifos	ND	0.050	"	11	**	"	n	17	R-07
Fenthion	ND	0.050	"	11	**	"	n	17	R-07
Trichloronate	ND	0.050	"	11	**	"	n	11	R-07
Methyl parathion	ND	0.050	"	**	**	"	n	11	R-07
Malathion	ND	0.10	"	**	**	"	n	TT .	R-07
Tokuthion (Prothiofos)	ND	0.050	"	**	**	**	n	Ħ	R-07
Parathion	ND	0.050	"	**	**	**	H	"	R-07
Stirophos (Tetrachlorvinphos)	ND	0.050	"	**	**	**	H	TT .	R-07
Bolstar	ND	0.050	"	**	**	**	H	TT .	R-07
Fensulfothion	ND	0.050	"	"	**	n	H	Ħ	R-07
EPN	ND	0.050	"	**	n	n	H	n	R-07
Azinphos methyl	ND	0.10	"	"	**	n	н	n	R-07
Coumaphos	ND	0.050	"	**	**	**	II	U	R-07
Surrogate: Tributylphosphate		121 %	40-	125	"	rr .	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 14 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC11-2 T193739-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	"	"	**	**	H.	"	
Demeton-s	ND	0.010	"	"	**	**	n.	"	
Ethoprophos	ND	0.0050	"	"	**	**	II .	"	
Phorate	ND	0.010	"	"	**	**	II .	"	
aled	ND	0.0050	n .	"	**	**	H .	"	
Sulfotep	ND	0.010	"	**	**	**	H	"	
Diazinon	ND	0.0050	"	**	**	**	H	"	
Disulfoton	ND	0.0050	"	**	**	**	H	"	
Demeton-o	ND	0.010	"	**	**	**	H	"	
Dimethoate	ND	0.0050	"	**	**	**	H	"	
Ronnel	ND	0.010	"	**	**	**	W	"	
Merphos	ND	0.010	"	11	**	**	W	"	
Chlorpyrifos	ND	0.0050	"	"	**	**	n.	"	
Fenthion	ND	0.0050	"	11	**	11	n	"	
Trichloronate	ND	0.0050	"	11	**	**	n	"	
Methyl parathion	ND	0.0050	"	**	**	**	W	"	
Malathion	ND	0.010	"	11	**	**	H.	"	
Tokuthion (Prothiofos)	ND	0.0050	"	11	**	**	H.	u,	
Parathion	ND	0.0050	"	**	**	**	H	"	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	**	**	**	H.	· ·	
Bolstar	ND	0.0050	"	**	**	**	H.	· ·	
Fensulfothion	ND	0.0050	"	**	**	**	H	· ·	
EPN	ND	0.0050	"	**	**	**	H.	· ·	
Azinphos methyl	ND	0.010	"	"	**	**	н	TI .	
Coumaphos	ND	0.0050	"	**	**	**	II	TT .	
Surrogate: Tributylphosphate		103 %	40	125	"	"	"	11	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 15 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC12-2 T193739-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	"	11	**	"	11	"	
Demeton-s	ND	0.010	"	11	**	"	11	"	
Ethoprophos	ND	0.0050	"	11	**	**	11	"	
Phorate	ND	0.010	n	"	**	"	"	"	
aled	ND	0.0050	n	"	**	"	H	"	
Sulfotep	ND	0.010	n	"	**	"	H	"	
Diazinon	ND	0.0050	"	"	**	"	H	"	
Disulfoton	ND	0.0050	"	"	**	"	H	**	
Demeton-o	ND	0.010	"	"	**	"	H	**	
Dimethoate	ND	0.0050	"	"	**	**	H	17	
Ronnel	ND	0.010	"	n	**	**	II	17	
Merphos	ND	0.010	"	n	11	11	II.	17	
Chlorpyrifos	ND	0.0050	"	"	**	**	H	17	
Fenthion	ND	0.0050	"	"	**	**	H	11	
Trichloronate	ND	0.0050	"	"	**	**	H	11	
Methyl parathion	ND	0.0050	"	n	**	**	H	11	
Malathion	ND	0.010	"	"	**	**	11	n	
Tokuthion (Prothiofos)	ND	0.0050	"	"	**	**	11	tt.	
Parathion	ND	0.0050	"	"	**	**	11	tt.	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	"	**	**	11	**	
Bolstar	ND	0.0050	n	"	**	**	"	**	
Fensulfothion	ND	0.0050	"	"	**	**	"	"	
EPN	ND	0.0050	"	"	**	"	"	"	
Azinphos methyl	ND	0.010	"	"	**	"	H.	"	
Coumaphos	ND	0.0050	"	"	**	"	"	"	
Surrogate: Tributylphosphate		115 %	40-	125	n .	rr .	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 16 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC13-2 T193739-13 (Soil)

Analyte Res	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA Method 8141.	A							
Dichlorvos N	ND 0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	VD 0.0050	"	"	"	"	"	"	
Demeton-s	VD 0.010	"	"	"	"	"	"	
Ethoprophos	ND 0.0050	"	"	"	"	"	n	
Phorate 1	VD 0.010	"	"	**	"	"	**	
aled	ND 0.0050	"	"	**	**	"	**	
Sulfotep	VD 0.010	"	"	**	**	"	**	
Diazinon	ND 0.0050	"	"	**	**	"	**	
Disulfoton N	ND 0.0050	"	**	**	"	"	"	
Demeton-o	ND 0.010	"	**	**	**	"	**	
Dimethoate N	ND 0.0050	"	**	**	"	"	"	
Ronnel	ND 0.010	"	**	**	"	m .	"	
Merphos 1	ND 0.010	"	11	17	17	m .	"	
Chlorpyrifos	ND 0.0050	"	11	"	"	n .	11	
Fenthion 1	ND 0.0050	"	11	17	11	m .	n	
Trichloronate	ND 0.0050	"	11	17	11	m .	n	
Methyl parathion	ND 0.0050	"	11	**	11	m .	n	
Malathion	ND 0.010	"	**	**	Ħ	II .	Ħ	
Tokuthion (Prothiofos)	ND 0.0050	"	11	**	**	III	n	
Parathion 1	ND 0.0050	"	**	**	**	III	Ħ	
Stirophos (Tetrachlorvinphos)	ND 0.0050	**	**	Ħ	Ħ	m .	Ħ	
Bolstar	ND 0.0050	"	"	Ħ	Ħ	II .	n	
Fensulfothion 1	ND 0.0050	"	"	Ħ	Ħ	II .	n	
EPN	ND 0.0050	"	"	Ħ	Ħ	II .	n	
Azinphos methyl N	ND 0.010	"	"	**	**	"	**	
Coumaphos	ND 0.0050	"	"	**	"	"	"	
Surrogate: Tributylphosphate	97.2 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 17 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC14-2 T193739-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Mevinphos	ND	0.050	"	"	**	"	11	"	R-07
Demeton-s	ND	0.10	"	"	**	**	11	"	R-07
Ethoprophos	ND	0.050	"	"	**	**	11	"	R-07
Phorate	ND	0.10	"	"	**	**	11	"	R-07
Naled	ND	0.050	"	"	**	**	11	"	R-07
Sulfotep	ND	0.10	"	"	**	**	11	"	R-07
Diazinon	ND	0.050	"	"	**	**	**	"	R-07
Disulfoton	ND	0.050	"	"	**	"	"	"	R-07
Demeton-o	ND	0.10	"	**	**	"	H	**	R-07
Dimethoate	ND	0.050	"	**	**	"	H	**	R-07
Ronnel	ND	0.10	"	**	**	"	W	**	R-07
Merphos	ND	0.10	"	11	**	"	W	11	R-07
Chlorpyrifos	ND	0.050	"	11	11	11	II	17	R-07
Fenthion	ND	0.050	"	11	**	"	W	11	R-07
Trichloronate	ND	0.050	"	"	**	**	H	11	R-07
Methyl parathion	ND	0.050	"	"	**	**	H	11	R-07
Malathion	ND	0.10	"	"	**	**	H	11	R-07
Tokuthion (Prothiofos)	ND	0.050	"	"	**	**	H	11	R-07
Parathion	ND	0.050	"	"	**	**	11	tt.	R-07
Stirophos (Tetrachlorvinphos)	ND	0.050	"	"	**	**	11	tt.	R-07
Bolstar	ND	0.050	"	"	**	**	11	tt.	R-07
Fensulfothion	ND	0.050	"	"	**	n	н	· ·	R-07
EPN	ND	0.050	"	"	**	n	н	· ·	R-07
Azinphos methyl	ND	0.10	"	"	**	n	н	· ·	R-07
Coumaphos	ND	0.050	"	"	**	n	11	"	R-07
Surrogate: Tributylphosphate		107 %	40	125	n .	rr .	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 18 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC15-2 T193739-15 (Soil)

Prganophosphorus Pesticides by EPA Method 8141A pichlorvos flevinphos Premeton-s Premeton-s Principles Princi	0.050 0.050 0.050 0.10 0.050 0.10 0.050 0.050 0.10 0.050	mg/kg " " " " " "	10 " " " " " " " " " " " " " " " " " " "	9103026	10/30/19	10/31/19	8141a " " " " " " " "	R-07 R-07 R-07 R-07 R-07 R-07 R-07
richlorvos Mo Mevinphos Mo Mo Mo Mo Mo Mo Mo Mo Mo	0.050 0.10 0.050 0.10 0.050 0.10 0.050 0.050 0.10	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	17 17 17 17 17 18	17 17 17 17 17 17	11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	R-07 R-07 R-07 R-07 R-07 R-07
Mevinphos Mothoprophos Mothopro	0.050 0.10 0.050 0.10 0.050 0.10 0.050 0.050 0.10	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	17 17 17 17 17 18	17 17 17 17 17 17	11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	R-07 R-07 R-07 R-07 R-07 R-07
thoprophos ND thorate ND aled ND diffetep ND disazinon ND	0.10 0.050 0.10 0.050 0.10 0.050 0.050	" " " " " " "	" " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	n n n	11 11 11 11	R-07 R-07 R-07 R-07 R-07
thoprophos ND horate ND aled ND aled ND biazinon ND bisulfoton ND bisulf	0.050 0.10 0.050 0.10 0.050 0.050	" " " " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11	" " " " "	R-07 R-07 R-07 R-07
horate ND aled ND ulfotep ND viazinon ND visulfoton ND visulfoton ND vimethoate ND vimethoate ND derphos ND hlorpyrifos ND enthion ND vichloronate ND dethyl parathion ND falathion ND	0.10 0.050 0.10 0.050 0.050 0.10	" " " " " " " " " " " " " " " " " " " "	" " " " "	11 11 11	11 11 11	n n n	" "	R-07 R-07 R-07
aled ND ulfotep ND viazinon ND visulfoton ND	0.050 0.10 0.050 0.050 0.050	"""""""""""""""""""""""""""""""""""""""	n n n	11 11	" " " " " " " " " " " " " " " " " " " "	11 11	11	R-07 R-07 R-07
ulfotep ND riazinon ND risulfoton ND remeton-o ND rimethoate ND remetons ND remetors ND remetons ND re	0.10 0.050 0.050 0.10	" "	" "	"	"	11	"	R-07 R-07
plazinon ND plazin	0.050 0.050 0.10	"	"	11	11	H	**	R-07
risulfoton ND remeton-o ND rimethoate ND rimethose ND remeton ND remeton-o ND remeton-o ND remeton-o ND remeton-o ND remeton ND remeton-o ND rem	0.050 0.10	"	"	"	"			
remeton-o rimethoate ronnel ronnel rephos remethon richloronate richlo	0.10	"				H	"	D 0=
rimethoate ND connel ND ferphos ND hlorpyrifos ND enthion ND richloronate ND fethyl parathion ND falathion ND			**					R-07
onnel ND ferphos ND hlorpyrifos ND enthion ND richloronate ND fethyl parathion ND falathion ND	0.050			•	**	H	**	R-07
derphosNDhlorpyrifosNDenthionNDrichloronateNDdethyl parathionNDfalathionND		"	**	**	**	H	**	R-07
hlorpyrifos ND enthion ND richloronate ND fethyl parathion ND falathion ND	0.10	**	"	n	n	и	TT .	R-07
enthion ND richloronate ND lethyl parathion ND lalathion ND	0.10	**	"	11	11	II	**	R-07
richloronate ND Methyl parathion ND Malathion ND	0.050	**	"	**	**	H	17	R-07
Iethyl parathionNDfalathionND	0.050	**	"	"	"	н	"	R-07
falathion ND	0.050	**	"	"	"	н	"	R-07
	0.050	**	"	**	**	H	**	R-07
	0.10	**	"	**	**	н	**	R-07
okuthion (Prothiofos) ND	0.050	"	"	**	**	н	**	R-07
arathion ND	0.050	"	"	**	**	н	**	R-07
tirophos (Tetrachlorvinphos) ND	0.050	**	11	**	**	н	**	R-07
olstar ND	0.050	**	"	**	**	н	**	R-07
ensulfothion ND	0.050	**	"	**	**	н	n	R-07
PN ND	0.050	**	**	**	**	n	**	R-07
zinphos methyl ND	0.10	**	"	**	**	n	"	R-07
oumaphos ND	0.050	**	"	**	**	"	"	R-07
urrogate: Tributylphosphate	132 %	40-1	25	"	"	"	"	S-11

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 19 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

Organophosphorus Pesticides by EPA Method 8141A - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
		Reporting		Spike	Source		/orce		IG D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 9103026 - EPA 3550 ECD/GCMS	Ratch 9103026	- EPA 3550	ECD/CCMS
-----------------------------------	---------------	------------	----------

Blank (9103026-BLK1)				Prepared: 10/30/19 Analyzed: 10/31/19
Dichlorvos	ND	0.0050	mg/kg	
Mevinphos	ND	0.0050	"	
Demeton-s	ND	0.010	"	
Ethoprophos	ND	0.0050	11	
Phorate	ND	0.010	**	
aled	ND	0.0050	11	
Sulfotep	ND	0.010	11	
Diazinon	ND	0.0050	11	
Disulfoton	ND	0.0050	11	
Demeton-o	ND	0.010	"	
Dimethoate	ND	0.0050	"	
Ronnel	ND	0.010	11	
Merphos	ND	0.010	**	
Chlorpyrifos	ND	0.0050	11	
Fenthion	ND	0.0050	11	
Trichloronate	ND	0.0050	11	
Methyl parathion	ND	0.0050	11	
Malathion	ND	0.010	"	
Tokuthion (Prothiofos)	ND	0.0050	11	
Parathion	ND	0.0050	11	
Stirophos (Tetrachlorvinphos)	ND	0.0050	11	
Bolstar	ND	0.0050	11	
Fensulfothion	ND	0.0050	"	
EPN	ND	0.0050	"	
Azinphos methyl	ND	0.010	11	
Coumaphos	ND	0.0050	11	
Surrogate: Tributylphosphate	0.0401		"	0.0399 100 40-125

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 20 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

Organophosphorus Pesticides by EPA Method 8141A - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9103026 - EPA 3550 ECD/GCMS										
LCS (9103026-BS1)				Prepared: 1	10/30/19 A	nalyzed: 10	/31/19			
Diazinon	0.0444	0.0050	mg/kg	0.0398		112	60-130			
Chlorpyrifos	0.0339	0.0050	"	0.0398		85.0	60-130			
Methyl parathion	0.0416	0.0050	"	0.0398		104	60-130			
Stirophos (Tetrachlorvinphos)	0.0546	0.0050	H	0.0398		137	60-130			QM-11
Surrogate: Tributylphosphate	0.0412		"	0.0398		103	40-125			
LCS Dup (9103026-BSD1)				Prepared: 1	10/30/19 A	nalyzed: 10	/31/19			
Diazinon	0.0475	0.0050	mg/kg	0.0397		120	60-130	6.79	20	
Chlorpyrifos	0.0381	0.0050	"	0.0397		96.0	60-130	11.7	20	
Methyl parathion	0.0450	0.0050	"	0.0397		113	60-130	7.75	20	
Stirophos (Tetrachlorvinphos)	0.0529	0.0050	H	0.0397		133	60-130	3.14	20	QM-11
Surrogate: Tributylphosphate	0.0726		"	0.0397	-	183	40-125		-	S-09

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 21 of 22

Jones EnvironmentalProject:BCHD11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

Notes and Definitions

S-11	The surrogate recovery was above acceptance criteria in the sample. The sample is ND for the analytes of interest. The surrogate recovery was within acceptance criteria in the method blank and LCS.
S-09	The surrogate recovery in the LCS, MS and/or MSD was bias high. The surrogate recovery in associated samples was within acceptance criteria and the samples were ND. No negative impact on data is expected.
R-07	Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s) and/or matrix affect.
QM-11	The LCS and LCSD were above acceptance criteria. The method blank and sample were ND for the analyte in question. The CCV was within acceptance criteria. There was insufficient sample for reextraction. No negative impact on data is expected.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 22 of 22

11007 Forest PI.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.ionesenv.com

	14:27	10.25.19		SAR	SAN STAR	1.91	47-19	()		C anstar
provided herein is correct and accurate.	Time	Date			Company	~∃'i	(, Da		ompany
constitutes acknowledgement that the above analyses have been reqested, and the information	<u>a</u>	Printed Name	ature)	Received by Laboratory (Signal	Received by La	the of		2		
Client signature on this Chain of Custody form	30	73		suns ter		1335	(0-25-19)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		elinguished By (Signature)
10 Total Number of Containers	<u> </u>	CIND	\			Time	Colby W.	Da		ompany 2
		Printed Name		ignature)	Received By (Signature)		Printed Name	Pr		elinquished By (Signature)
			×	S			24 10	9 08:24	10/24/2019	3C10-2
			×	S		9	30 09	19 07:30	10/24/2019	3C9-2
			×	S		80		13:20	10/23/2019	3C8-2
			×	S		7	45	19 12:45	10/23/2019	3C7-2
			×	S		96	45 0	19 11:45	10/23/2019	3C6-2
			×	-60		05	,	19 10:55	10/23/2019	3C5-2
			×			40		19 10:10	10/23/2019	BC4-2
			×			03		19 09:30	10/23/2019	BC3-2
			×			02		19 08:45	10/23/2019	BC2-2
1 57-14526			s ×			0/		19 07:30	10/23/2019	BC1-2
Notes & Special Instructions			Sample Soil (S), Slu EPA 8141	Sample Container	Preservative	Laboratory Sample ID		Sample Collection Time	Date	Sample ID
of Co		-			O - Other (See Notes)	0-0				
nontainer No					MeUH - Methanol HCI - Hydrochloric Acid HNO3 - Nitric Acid	HCI.		cer	Sampler Spencer	Colby
,			ous (A)	ਜ	P - Plastic SOBI - Sodium Bisulfate	SOE SOE				714-449-9937
Sealed u yes u no			, Free f		G - Glass AB - Amber Bottle	AB-				reports@jonesenv.com
Sample Condition as Recieved: Chilled			Product (eeve	AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve	SS SS				Redondo Beach, CA Email
Q	Jested	Analysis Requested	<u> P)</u>	reservative	Sample Container / Preservative Abbreviations	Sa	.:			520 N. Prospect Ave
Page	*Global ID		□ Rush 72 Hours □ Normal		18-41-296-02	18-2				BCHD Project Address
			□ Rush 48 Hours		Client Project #	Client				Project Name
Jones Project#	Report Options EDD EDF* - 10% Surcharge	esteu:	□ Immediate Attention □ Rush 24 Hours		Date 10/23/2019	Date 10/3				Client Converse Consultants
LAB USE ONLY			T	ੜ	www.jonesenv.com	w	; INC.	ZIAI	ENVIRONMENTAL, INC.	FNVIF

ENVIRONMENTAL, INC.

11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937

Chain-of-Custody Record

Cilent Con Projec BCH Projer 520 Date Fax (714) 449-9685 www.jonesenv.com Turn Around Requested: Immediate Attention Report Options LAB USE ONLY Jones Project #

	(4:27		10 25/19		246	Sw Star	14:27	(0-25-19		> ru Stow
provided herein is correct and accurate.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date Time	D			Company	Time	Date:		company
constitutes acknowledgement that the above analyses have been reqested, and the information	cx analy	Printed Name	\a_3	<i>)</i> =	oratory (signature	received by Laboratory (Signatu	hance	Pavis 1	1	
Client signature on this Chain of Custody form	17:30	1			nster			10-25-19		lelinguished By (Signature)
Total Number of Containers	1 Cr	Pate Favis Berner			X	Company	DIEU Nokem	Date		Sompany Jall
		Printed Name			nature)	Received By (Signature))	Printed Name		Relinquished By (Signature) / / / /
							- Company			
		***************************************	· · · · · · · · · · · · · · · · · · ·							
				×	S		15	11:50	10/24/2019	BC15-2
				×	S		7	11:15	10/24/2019	BC14-2
				×	S		13	10:40	10/24/2019	BC13-2
				×	S		12	10:10	10/24/2019	BC12-2
	_							09:34	10/24/2019	BC11-2
Notes & Special Instructions	Number (EPA 8141	Sample Sample Soil (S), Slu	Preservative	Laboratory Sample ID	Sample Collection Time	Date	Sample ID
	of Co			age (O - Other (See Notes)	0-1		-	
4,36	ontaine			SL), Aque		MeOH - Methanol HCl - Hydrochloric Acid HNO3 - Nitric Acid	HCI HCI	•	Sampler Spencer	Report To Colby
	rs.			ious (A)	agus (A)	P - Plastic SOBI - Sodium Bisulfate	P-I			714-449-9937
				, Free Pi	Free Dr	G - Glass AB - Amber Bottle	AB			reports@jonesenv.com
Sample Condition as Recieved: Chilled				oduct (F		AS - Acetate Sleeve SS - Stainless Steel Sleeve	AS			Redondo Beach, CA
of	ted.	Analysis Requested	- 	<u>~)</u>	_ `	Sample Container / Preservative Abbreviations	<u>Se</u>			520 N. Prospect Ave
Page		.1	_	Normal		18-41-290-02	Īα			Project Address
	ō	*Global ID	□ Rush 48 Hours □ Rush 72 Hours	Rush 4 Rush 7		Client Project #	Clien			Project Name
	EDF* - 10% Surcharge	EDF*-1	□ Rush 24 Hours	Rush 2		10/23/2019	10/			Converse Consultants

SW STAR

10 25/19

(4:27

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	1 193739		
Client Name:	Jones	Project:	BCHD
Delivered by:	Client SunStar Coun	ier 🗌 GSO [FedEx Other
If Courier, Received by:	Travis	Date/Time Co Received:	10-25-19 15:30
Lab Received by:	Sunny	Date/Time Lal Received:	10-25-19 (4:27
Total number of coolers re	eceived: Thermometer	ID: <u>50-1</u>	Calibration due : <u>6/27/20</u>
Temperature: Cooler #1	°C +/- the CF (+ 1.2°	C) =	°C corrected temperature
Temperature: Cooler #2	°C +/- the CF (+ 1.2°	C) =	°C corrected temperature
Temperature: Cooler #3	°C +/- the CF (+ 1.2°	C) =	°C corrected temperature
Temperature criteria = 5 (no frozen containers)	≤6°C Within	n criteria?	✓Yes □No
If NO:			
Samples received	on ice?	3	□No → Complete Non-Conformance Sheet
If on ice, samples collected?	received same day	s → Acceptable	Omplete Non-Conformance Sheet Complete Non-Conformance Sheet
Custody seals intact on co	ooler/sample		□Yes □No* □N/A
Sample containers intact			☐Yes ☐No*
Sample labels match Chai	in of Custody IDs		✓Yes □No*
Total number of container	rs received match COC		⊻Yes □No*
Proper containers received	d for analyses requested on COC		√Yes □No*
Proper preservative indica	ated on COC/containers for analy	ses requested	□Yes □No* ☑N/A
	ved in good condition with corre es preservatives and within meth		Yes No*
* Complete Non-Conformar	nce Receiving Sheet if checked	Cooler/Sample Revi	ew - Initials and date: B 10-25-19
Comments:			

Printed: 10/28/2019 9:29:56AM

WORK ORDER

T193739

Client:Jones EnvironmentalProject Manager:Jeff LeeProject:BCHDProject Number:[none]

Report To:

Jones Environmental Colby Wakeman 11007 Forest Place

Santa Fe Springs, CA 90670

Date Due: 11/01/19 17:00 (5 day TAT)

Received By: Travis Berner Date Received: 10/25/19 14:27
Logged In By: Travis Berner Date Logged In: 10/25/19 17:20

Samples Received at: 4.3°C

Custody Seals No Received On Ice Yes

COC/Labels Agree Yes
Preservation Confir No

Analysis	Due	TAT	Expires	Comments
T193739-01 BC1-2 [Soil] &	Sampled 10/23/19 07:30) (GMT-08	:00) Pacific Time (U	US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 07:30	
T193739-02 BC2-2 [Soil]	Sampled 10/23/19 08:45	5 (GMT-08	:00) Pacific Time (U	US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 08:45	
T193739-03 BC3-2 [Soil]	Sampled 10/23/19 09:30) (GMT-08	:00) Pacific Time (U	US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 09:30	
T193739-04 BC4-2 [Soil]	Sampled 10/23/19 10:10) (GMT-08	:00) Pacific Time (U	U S
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 10:10	
T193739-05 BC5-2 [Soil]	Sampled 10/23/19 10:55	5 (GMT-08	:00) Pacific Time (U	US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 10:55	
T193739-06 BC6-2 [Soil]	Sampled 10/23/19 11:45	5 (GMT-08	:00) Pacific Time (U	US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 11:45	
T193739-07 BC7-2 [Soil]	Sampled 10/23/19 12:45	5 (GMT-08	:00) Pacific Time (U	US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 12:45	

Printed: 10/28/2019 9:29:56AM

WORK ORDER

T193739

Client: Jones Environmental Project Manager: Jeff Lee

Project: BCHD Project Number: [none]

Analysis	Due	TAT	Expires	Comments
T193739-08 BC8-2 [Soil] &	Sampled 10/23/19 13:20) (GMT-08	:00) Pacific Time	(US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 13:20	
T193739-09 BC9-2 [Soil] &	Sampled 10/24/19 07:30) (GMT-08	:00) Pacific Time	(US
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 07:30	
T193739-10 BC10-2 [Soil] (US &	Sampled 10/24/19 08:2	24 (GMT-0	8:00) Pacific Time	e
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 08:24	
T193739-11 BC11-2 [Soil] (US &	Sampled 10/24/19 09:3	34 (GMT-0	8:00) Pacific Time	e
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 09:34	
T193739-12 BC12-2 [Soil] (US &	Sampled 10/24/19 10:3	10 (GMT-0	8:00) Pacific Time	e
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 10:10	
T193739-13 BC13-2 [Soil] (US &	Sampled 10/24/19 10:4	40 (GMT-0	8:00) Pacific Time	e
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 10:40	
T193739-14 BC14-2 [Soil] (US &	Sampled 10/24/19 11:1	15 (GMT-0	8:00) Pacific Time	e
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 11:15	
T193739-15 BC15-2 [Soil] (US &	Sampled 10/24/19 11:5	50 (GMT-0	8:00) Pacific Time	e
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 11:50	

Reviewed By Date Page 2 of 2

December 31, 2019

Converse Consultants ATTN: Michael Van Fleet 717 S. Myrtle Ave. Monrovia, CA 91016-3500

LABORATORY TEST RESULTS

Project Reference: BCHD

Project Number: 18-41-296-02 Lab Number: K122301-01/06

Enclosed are results for sample(s) received 12/23/19 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Michael Van Fleet on 12/26/19.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

		10000 F			CHAIL	NOF	CHAIN OF CUSTODY RECORD	RECORD	
	ATTITECHNOLOGY	City of Industry, CA 91748	TUT	TURNAROUND TIME	ID TIME	O	DELIVERABLES PAGE:	PAGE: OF	
	Laboratories, Inc.	Ph: 626-964-4032	Standard	□	48 hours		EDD 🔲	Condition upon receipt:	
J-VJ-V		Fx: 626-964-5832	Same Day		72 hours		EDF	Sealed Yes	□ %
Project No.:	16-41-296-02		24 hours	° П	96 hours		LEVEL 3	Intact Yes	□ %
Project Name:	BCHD-		Other:			-	LEVEL 4	Chilled	O geb —
Report To:	MICHAEL VAN FLEET	T		BILLING	5	П	A	ANALYSIS REQUEST	
Company:	COMMERSE CONSULTANTS	ATA.	P.O. No.:						
Street:	717 S. MYRTUE AVE	Δî.	Bill to:						
City/State/Zip:	MONROUIA CA	91016							
Phone& Fax:	1921-056 929						ч		
e-mail:	manfleteconsisteconsultanteon	onsultants com				Ì	15		
LAB USE ONLY		SAMPLE IDENTIFICATION	SAMPLE STAG	3JAMA2 3MIT	XIATAM	CONTAINER TYPE	9101		
4122301	10-129		1221	8,08	AIR	.)	7		
	2-015, 20-8		12 21	91.8		_	×		
	-03 CP-OFFICE		12/21	8,13			×		
	-04 BELLD AHBIEN	レオ	12/21	8:25			4		
	1-05 1514-5F-1		12 21	8.3	7	>	4		
>	-01-NY 415, 90-		12/21	8:3	-	>	4		
UTHORIZATION TO PERFORM WORK	RFORM WORK COMPANY		DATE/TIME	╬	COMMENTS	- _s			
AMPLED BY	JEZT HLF COMPANY	COMPANY COMPANY OF 12		934					
72	ELEGICE ON TO 23/19	12	123/19 DATE/TIME	62.01					
ELINQUISHED BY	DATE/TIME	Myden !		.03					
(ETHOD OF TR.	IETHOD OF TRANSPORT (circle one): Walk-In FedEx	Ex UPS Courier ATLI Other	ler						
ISTRIBUTION:	ISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy		Preservation:	H=HCL N	=None / C	ontainer:	B=Bag C=Car	Preservation: H=HCL N=None / Container: B=Bag C=Can V=VOA O=Other Rev. 0	Rev. 03 - 5/7/09

Client: Converse Consultants
Attn: Michael Van Fleet

Project Name: BCHD
Project No.: 18-41-296-02
Date Received: 12/23/19
Matrix: Air
Reporting Units: ug/m3

EPA Method TO15 SIM

Lab No.:	K122301-01		K1223	01-02	K1223	01-03	K122301-04		
Client Sample I.D.:	510-129		520-8		CP-Office		Ambient		
Date/Time Sampled:	12/21/19 8:08 12/26/19 3:41 191225MS2A1		12/21/1	9 8:16	12/21/1	9 8:23	12/21/19 8:25 12/25/19 10:54		
Date/Time Analyzed:			12/25/1	9 9:33	12/25/19				
QC Batch No.:			191225	MS2A1	191225N		191225MS2A1		
Analyst Initials:	M	J	М	J	М	J	MJ		
Dilution Factor:	1.0		1.	0	1.0	0	1.0		
ANALYTE	Result ug/m3	RL ug/m3	Result ug/m3	RL ug/m3	Result ug/m3	RL ug/m3	Result ug/m3	RL ug/m3	
Dichlorodifluoromethane (12)	2.1	0.049	2.1	0.049	2.1	0.049	2.0	0.049	
Chloromethane	1.0	0.021	1.4	0.021	1.0	0.021	1.0	0.021	
Vinyl Chloride	ND	0.013	ND	0.013	ND	0.013	ND	0.013	
Chloroethane	0.031	0.026	0.18	0.026	0.19	0.026	0.040	0.026	
Trichlorofluoromethane (11)	1.2	0.11	1.2	0.11	1.2	0.11	1.2	0.11	
1,1,2-Cl 1,2,2-F ethane (113)	0.50	0.15	0.50	0.15	0.48	0.15	0.48	0.15	
1,1-Dichloroethene	ND	0.020	ND	0.020	ND	0.020	ND	0.020	
Methylene Chloride	0.56	0.17	0.69	0.17	0.58	0.17	0.72	0.17	
t-1,2-Dichloroethene	ND	0.040	0.055	0.040	0.041	0.040	ND	0.040	
1,1-Dichloroethane	ND	0.040	ND	0.040	ND	0.040	ND	0.040	
c-1,2-Dichloroethene	ND	0.040	ND	0.040	ND	0.040	ND	0.040	
Chloroform	0.42	0.049	2.6	0.049	0.15	0.049	0.18	0.049	
1,1,1-Trichloroethane	ND	0.055	ND	0.055	ND	0.055	ND	0.055	
Carbon Tetrachloride	0.46	0.063	0.47	0.063	0.44	0.063	0.45	0.063	
Benzene	1.5	0.16	7.0	0.16	1.3	0.16	1.3	0.16	
1,2-Dichloroethane	0.074	0.040	0.079	0.040	0.10	0.040	0.075	0.040	
Trichloroethene	ND	0.054	0.070	0.054	0.056	0.054	ND	0.054	
1,2-Dichloropropane	ND	0.092	ND	0.092	ND	0.092	ND	0.092	
Bromodichloromethane	0.14	0.067	ND	0.067	ND	0.067	ND	0.067	
Toluene	4.6	0.075	6.8	0.075	4.4	0.075	3.7	0.075	
t-1,3-Dichloropropene	ND	0.045	ND	0.045	ND	0.045	ND	0.045	
1,1,2-Trichloroethane	ND	0.055	ND	0.055	ND	0.055	ND	0.055	
Tetrachloroethene	0.22	0.068	0.21	0.068	0.17	0.068	0.16	0.068	
1,2-Dibromoethane	ND	0.15	ND	0.15	ND	0.15	ND	0.15	
Ethylbenzene	0.72	0.087	1.4	0.087	0.69	0.087	0.59	0.087	
p,&m-Xylene	2.5	0.087	4.0	0.087	2.5	0.087	2.0	0.087	
o-Xylene	0.95	0.087	1.7	0.087	0.97	0.087	0.78	0.087	
Styrene	0.33	0.085	1.3	0.085	0.30	0.085	0.31	0.085	
1,1,2,2-Tetrachloroethane	ND	0.14	ND	0.14	ND	0.14	ND	0.14	

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: Operations Manager

Date 12-31-19

cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. .

K122301 SIM.xisx

Client: Converse Consultants Attn: Michael Van Fleet

Project Name: BCHD
Project No.: 18-41-296-02
Date Received: 12/23/19
Matrix: Air
Reporting Units: ug/m3

EPA Method TO15 SIM

Lab No.:	K1223	01-06					
Client Sample I.D.:	K122301-05 514-SF-1 12/21/19 8:31 12/25/19 11:38		514-AH-10 12/21/19 8:34				
Date/Time Sampled:							
Date/Time Analyzed:			12/25/19				
QC Batch No.:		191225MS2A1		MS2A1			
Analyst Initials:	MJ 1.0		M				
Dilution Factor:			1.				
	Result	RL	Result	RL			- 1 =
ANALYTE	ug/m3	ug/m3	ug/m3	ug/m3			
Dichlorodifluoromethane (12)	2.1	0.049	2.0	0.049			
Chloromethane	1.0	0.021	1.0	0.021			
Vinyl Chloride	ND	0.013	0.013	0.013			
Chloroethane	0.14	0.026	0.17	0.026	-11	- 1	
Trichlorofluoromethane (11)	1.2	0.11	1.2	0.11		1	
1,1,2-Cl 1,2,2-F ethane (113)	0.50	0.15	0.48	0.15			
1,1-Dichloroethene	ND	0.020	ND	0.020			
Methylene Chloride	0.58	0.17	0.59	0.17			
t-1,2-Dichloroethene	ND	0.040	ND	0.040			
1,1-Dichloroethane	ND	0.040	ND	0.040			
c-1,2-Dichloroethene	ND	0.040	ND	0.040			
Chloroform	0.17	0.049	0.35	0.049			
1,1,1-Trichloroethane	ND	0.055	ND	0.055			
Carbon Tetrachloride	0.46	0.063	0.44	0.063		- 1	
Benzene	1.4	0.16	1.3	0.16			
1,2-Dichloroethane	0.077	0.040	0.078	0.040			
Trichloroethene	ND	0.054	ND	0.054			
1,2-Dichloropropane	ND	0.092	ND	0.092			
Bromodichloromethane	ND	0.067	ND	0.067			
Toluene	4.1	0.075	3.8	0.075		-	
-1,3-Dichloropropene	ND	0.045	ND	0.045			
1,1,2-Trichloroethane	ND	0.055	ND	0.055			
Tetrachloroethene	0.16	0.068	0.25	0.068			
,2-Dibromoethane	ND	0.15	ND	0.15			
Ethylbenzene	0.65	0.087	0.61	0.087			
o,&m-Xylene	2.2	0.087	2.2	0.087			
o-Xylene	0.85	0.087	0.79	0.087		7 4 1	
Styrene	0.32	0.085	0.27	0.085			
1,1,2,2-Tetrachloroethane	ND	0.14	0.15	0.14			

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: Operations Manager

Date_17-31-19

cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

K122301 SIM xisx

Client: Converse Consultants Attn: Michael Van Fleet

BCHD

Project No.: 18-41-296-02
Date Received: 12/23/19
Matrix: Air
Reporting Units: ug/m3

Project Name:

EPA Method TO15 SIM

Lab No.: Method Blank					10			
Client Sample I.D.:								
Date/Time Sampled:	12/25/19 8:09 191225MS2A1 MJ						_	
Date/Time Analyzed:								
QC Batch No.:								
Analyst Initials:								
Dilution Factor:	1.	0						
ANALYTE	Result ug/m3	RL ug/m3						
Dichlorodifluoromethane (12)	ND	0.049						
Chloromethane	ND	0.021			1			
Vinyl Chloride	ND	0.013		1				
Chloroethane	ND	0.026						
Trichlorofluoromethane (11)	ND	0.11		14	10-		-11	
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.15		4	-1			
1,1-Dichloroethene	ND	0.020			d 1 -			
Methylene Chloride	ND	0.17						
t-1,2-Dichloroethene	ND	0.040					1.0	
1,1-Dichloroethane	ND	0.040		-10-	11			
c-1,2-Dichloroethene	ND	0.040						
Chloroform	ND	0.049						
1,1,1-Trichloroethane	ND	0.055						
Carbon Tetrachloride	ND	0.063				-1		
Benzene	ND	0.16						
1,2-Dichloroethane	ND	0.040		4//				
Trichloroethene	ND	0.054			Pal (g	- [/		
1,2-Dichloropropane	ND	0.092		- 1				
Bromodichloromethane	ND	0.067				-1	14,5	
Toluene	ND	0.075						
t-1,3-Dichloropropene	ND	0.045				[]		
1,1,2-Trichloroethane	ND	0.055			Trible :	1		
Tetrachloroethene	ND	0.068						
1,2-Dibromoethane	ND	0.15			114_			
Ethylbenzene	ND	0.087						
p,&m-Xylene	ND	0.087				74		
o-Xylene	ND	0.087						
Styrene	ND	0.085				10 11		
1,1,2,2-Tetrachloroethane	ND	0.14					le pro-	

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: ___

Operations Manager

Date 12-31-19

The cover letter is an integral part of this analytical report

LCS/LCSD Recovery and RPD Summary Report

QC Batch #: 191225MS2A1

Matrix: Air

		EPA Me	thod T()-15 SI	M						
Lab No:	Method Blank		LCS 12/25/19 6:55 25DEC002.D MJ 1.0		LC	LCSD					
Date Analyzed:	12/25/19 8:09				12/25/19 7:32 25DEC003.D MJ 1.0						
Data File ID:	25DEC004.D										
Analyst Initials:	MJ										
Dilution Factor:	1.0							Limits			
ANALYTE	Result pptv	Spike Amount	Result pptv	% Rec	Result pptv	% Rec	RPD	Low %Rec	High %Rec	Max. RPD	Pass/ Fail
Vinyl Chloride	0.0	500	474	95	484	97	2.1	70	130	30	Pass
1,1-Dichloroethene	0.0	500	449	90	442	88	1.5	70	130	30	Pass
1,1,1-Trichloroethane	0.0	500	512	102	506	101	1.2	70	130	30	Pass
Benzene	28.2	500	467	93	466	93	0.3	70	130	30	Pass
Trichloroethene	0.0	500	430	86	431	86	0.3	70	130	30	Pass
Tetrachloroethene	0.0	500	509	102	496	99	2.5	70	130	30	Pass

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date: 12-31-19