CONVERSE CONSULTANTS

Phase II Environmental Site Assessment Report

Beach Cities Health District 510, 512, 514, and 520 North Prospect Avenue Redondo Beach, California 90277

> Converse Project No. 18-41-296-02 February 26, 2020

Prepared For:

Beach Cities Health District 514 North Prospect Avenue Redondo Beach, California 90277

Prepared By:

Converse Consultants 717 S. Myrtle Avenue Monrovia, California 91016 February 26, 2020

Mr. Leslie Dickey
Executive Director of Real Estate
Beach Cities Health District
514 North Prospect Avenue
Redondo Beach, California 90277

Subject: PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

510, 512, 514 and 520 North Prospect Avenue

Redondo Beach, California 90277 Converse Project No. 18-41-296-02

VAN FLEET

Mr. Dickey:

Converse Consultants (Converse) is pleased to submit the attached report that summarizes the activities and the results of a *Phase II Environmental Site Assessment* (*Phase II ESA*) that was conducted at the referenced property.

We appreciate the opportunity to be of service. Should you have any questions or comments regarding this report, please contact Michael Van Fleet at (909) 796-0544 or Norman Eke at (626) 930-1260.

CONVERSE CONSULTANTS

Michael Van Fleet, PG

Senior Geologist

Dist.: 1/Addressee

Norman Eke

Senior Vice President/Managing Officer

Table of Contents

<u>Page</u>
1
2
2 2 2
3 3 3
3
4
4
5
5 5 5 t
7
7
7
8
8
8
10
10
10 10

		4.2.3 Methane Screening Results	12
		4.2.4 Ambient Air Samples	12
	4.3	Data Quality Assurance/Quality Control	13
		4.3.1 Hold Times	13
		4.3.2 Laboratory Quality Assurance	13
		4.3.3 Practical Quantitation Limits	14
5.0	INTE	RPRETATION AND CONCLUSIONS	15
	5.1	RECs and Potential Release Area(s)	15
	5.2	Conceptual Model Validation/Adequacy of Investigations	15
	5.3	Absence, Presence, Degree, Extent of Target Analytes	15
	5.4	Other Concerns	17
		5.4.1 Significant Assumptions	17
		5.4.2 Limitations and Exceptions	17
		5.4.3 Special Terms and Conditions	17
	5.5	Conclusions/Objectives Met	17
6.0	RECO	DMMENDATIONS	20
7.0	RELIA	ANCE	21
8 N	REFE	FRENCES AND SOURCES OF INFORMATION	23

FIGURES

Figure 1 – Site Vicinity

Figure 2 – Site Plan

Figure 3 – Sample Locations

TABLES

Table 1 – Summary of Analytical Results – Metals in Soil

Table 2 – Summary of Analytical Results – Non-Metals in Soil

Table 3 – Summary of Analytical Results – VOCs in Soil Vapor

Table 4 - Methane Screening Results

Table 5 – Summary of Analytical Results – VOCs in Indoor/outdoor Air

APPENDICES

Appendix A – Application for Authorization to Use

Appendix B – Laboratory Analytical Reports

1.0 Introduction

This *Phase II Environmental Site Assessment (ESA)* report has been prepared by Converse Consultants (Converse), on behalf of Beach Cities Health District (BCHD), for the sampling conducted at 510, 512, 514, and 520 North Prospect Avenue, and the adjoining vacant parcel located at Flagler Lane and Beryl Street (Flagler lot) in Redondo Beach, California (Site). Assessment activities were completed on the BCHD Campus, and the Flagler lot. The location of the Site is shown on Figure 1 - Site Vicinity, and the configuration of the Site is presented on Figure 2 – Site Plan.

Converse completed a Phase I ESA, dated May 15, 2019, for the Site. The assessment revealed no evidence of recognized environmental conditions in connection with the Site. However, the following on-site environmental concerns that do not rise to the level of a REC were noted:

- The 10,000-gallon diesel-fuel UST currently operating at the Site.
- The location of the Site within the Torrance Oil Field, and the presence of an abandoned oil well on Parcel 2.

The following adjoining and adjacent environmental concerns were also noted:

- The current operation of a Shell Service Station on the northwestern adjoining property (1200 Beryl Street).
- The former dry cleaners that operated at the northwestern adjoining property (1232 Beryl Street).
- The former landfill located on northeastern adjoining property (200 Flagler Lane).

For this Phase II ESA Converse generally followed the standard practices of the American Society for Testing Materials (ASTM) Designation: E1903-11 Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM, E 1903-11). The purpose of conducting the Phase II ESA in accordance with ASTM E1903-11 is to acquire and evaluate information sufficient to achieve the objective(s) set forth in the "Statement of Objectives" developed by the User and Converse. The objectives of the assessment were to:

- Evaluate environmental concerns in connection with the Site that were identified during a Phase I ESA conducted by Converse.
- Identify if potential target analytes are present at concentrations greater than threshold criteria.

2.0 Background

2.1 Site Description and Features

Details in the following sections regarding the Site and surrounding areas were obtained from the Converse Phase I ESA dated May 15, 2019.

2.1.1 Current Uses of the Site

The Site is owned by BCHD and is developed with a former hospital building (currently a long-term care facility, and medical office space), two (2) medical office buildings, a maintenance building, and two (2) parking garages. A portion of the Site (Flagler Lot) is vacant land.

2.1.2 Location

The Site is located at 510, 512, 514, and 520 North Prospect Avenue, Redondo Beach, California, on the north side of the intersection of Prospect Avenue and Diamond Street. The Site is located approximately 2.4-miles southwest of the San Diego (405) Freeway, and 1.1-mile east of the Pacific Ocean.

The Site consists of two (2) parcels and is approximately 10.38-acres. The Los Angeles County Assessor's Parcel Numbers (APNs) for the Site are 7502-017-901 and -902. The legal description of the Site is described as the following:

APN: 7502-017-901 (Parcel 1)

*TR=PARCEL MAP AS PER BK 144 P 2-3 OF PM LOT 1

APN: 7502-017-902 (Parcel 2)

*TR=PARCEL MAP AS PER BK 144 P 2-3 OF PM LOT 2

A third parcel that is part of this report is currently owned by the City of Torrance and includes a portion of undeveloped hillside, and a portion of Flagler Lane. No parcel number was available for this parcel.

2.1.3 Site and Vicinity General Characteristics

The Site consists of two (2) irregular-shaped parcels containing approximately 10.38-acres. The main parcel (Parcel 1) slopes from the northeast to the northwest and is located on a hillside. The Site is developed with four (4) buildings, and two (2) parking garages. The buildings are occupied by Beach Cities Health District Center for Health

and Fitness, and Silverado (514 N. Prospect Avenue), Cancer Care Associates (510 N. Prospect Avenue), and Providence (520 N. Prospect Avenue. The remainder of the Site consists of asphalt-covered parking areas. The smaller parcel (Parcel 2) is located approximately 20-feet lower in elevation than Parcel 1, and is currently vacant land. A third parcel (Parcel 3) that is included in this assessment is one that Beach Cities Healthcare District is intending on purchasing, and consists of an undeveloped hillside and a portion of Flagler Lane located east of Parcels 1 and 2.

The Site fronts onto North Prospect Avenue on the southwest, and Beryl Street on the north. Properties in the general area are used for commercial and residential purposes.

2.2 Physical Setting

2.2.1 Topography

The Site is located approximately 170 feet above mean sea level with surface topography sloping towards the south/southeast (United States Geological Survey [USGS] Topographic Map, Redondo Beach/Torrance, California, 2018).

2.2.2 Geology

The Site is underlain by unconsolidated and semi-consolidated alluvium, lake, playa, and terrace deposits (Division of Mines and Geology, Geologic Map of California, 2010).

2.2.3 Hydrogeology

According to case files related to a former leaking underground storage tank (LUST) case at the Site, the depth to groundwater at the Site is anticipated to be approximately 150 feet beneath ground surface (bgs) and the direction of flow is expected to be to the east. According to a prior site investigation report, several soil borings were completed at the Site to depths of 40-feet bgs, and groundwater was not encountered in any of the borings.

2.3 Site History and Land Use

Based on a historic records reviewed (topographic maps and aerial photographs) as part of the Phase I ESA the Site appeared to be undeveloped at least as of 1896. The Site was developed for agricultural use, including a pond in the center of Parcel 1, from as early as 1924 to 1941. Parcel 1 appeared vacant, and

Parcel 2 appeared developed with a small pond in 1947. By 1951, the Site appeared partially graded, and by 1956 the Site appeared developed with a baseball field. By 1963, the Site appeared developed with the existing hospital building, Parcel 2 appeared vacant, and Parcel 3 appeared developed with part of a roadway. In 1976, the second medical office building (510 N. Prospect Avenue) was constructed on Parcel 1. In 1989, the third medical office building was constructed on Parcel 1. Parcel 2 has remained vacant.

2.4 Adjacent Property Land Use

North: Beryl Street followed by residential.

Northeast: Intersection of Flagler Lane and Beryl Street followed by

Dominguez Park (former landfill), 200 Flagler Lane.

Northwest: Retail Shopping Center (1202-1262) Beryl Street, and Shell Service

Station (1200 Beryl Street).

South: North Prospect Avenue followed by residential.

Southeast: Intersection of North Prospect Avenue and Flagler Lane followed by

residential.

Southwest: North Prospect Avenue followed by residential.

East: Flagler Lane followed by residential.

West: North Prospect Avenue followed by residential.

2.5 Summary of Previous Assessment Reports

Converse completed a Phase I ESA, dated May 15, 2019, for the Site. This assessment revealed no evidence of recognized environmental conditions (RECs) in connection with the Site. However, the following on-site environmental concerns that do not rise to the level of a REC were noted:

- o The 10,000-gallon diesel-fuel UST currently operating at the Site.
- The location of the Site within the Torrance Oil Field, and the presence of an abandoned oil well on Parcel 2.

The following adjoining and adjacent environmental concerns were also noted:

- The current operation of a Shell Service Station on the northwestern adjoining property (1200 Beryl Street).
- The former dry cleaners (Coury & Son Cleaners) that operated from as early as 1990 to 2018 at the northwestern adjoining property (1232 Beryl Street).
- The former landfill located on northeastern adjoining property (200 Flagler Lane).

3.0 Work Performed and Rationale

3.1 Scope of Assessment

A conceptual model was developed based on data obtained from the prior assessment reports.

3.1.1 Target Analytes

Data obtained during the Phase I ESA indicated that methane, volatiles, hydrocarbons, and metals could be present in soil or soil vapor beneath the Site.

3.1.2 Target Analytes First Entered the Environment

Data indicate that target analytes would have first entered the environment by surface spills or releases to soil or be naturally occurring in the case of methane.

3.1.3 Environmental Media and Locations Most Likely to Have the Highest Concentrations of Target Analytes

Environmental media of concern are soil and soil vapor. Locations include a historic oil well, adjacent landfill and dry cleaner, UST use, and historic agricultural use.

The scope of this Phase II ESA was developed to investigate areas anticipated for site redevelopment and to target areas of concern/features (USTs, oil-field related activities, adjacent properties, etc.) that may have a potential for contributing to subsurface contamination that may require mitigation for proposed redevelopment.

This *Phase II ESA* consisted of the following primary elements:

- A geophysical survey was conducted to determine utility locations, and to clear the proposed boring locations. The geophysical survey did not identify the specific location of the former oil and gas well on the Flagler Lot, so Department of Oil, Gas and Geothermal Resources (DOGGR) records were reviewed to determine an approximate location. Review of agency records did not provide details on the abandonment method of the plugged oil well.
- A review of Regional Water Quality Control Board (RWQCB) records was completed to determine the location of former underground storage

- tanks (USTs) at the Site for the purpose of determining where to locate one (1) of the borings (BC6).
- A total of 15 soil borings were completed at the Site. One (1) boring (BC1) located along the northern Property boundary (nearest the former drycleaners on the northern adjoining property) was completed to a depth of 30 feet below ground surface (bgs). The remaining 14 borings (BC2 through BC15) were completed to depths of 15 feet bgs. Boring BC1 was advanced to a greater depth due to the elevation difference between the Site and the adjacent property.
- Soil samples were collected from boring BC1 (deep boring) at approximate depths of 2, 5, 10, 20 and 30-feet bgs. Soil samples from each of the remaining borings were collected at approximate depths of 2, 5, 10, and 15-feet bgs.
- Soil vapor probes were installed in the deep boring (BC1) at depths of 20 and 30-feet bgs. Soil vapor probes were installed in the nine (9) remaining boreholes at depths of 5 and 15-feet bgs.
- All soil and soil vapor samples were sent to Jones Environmental, Inc for analysis as follows:
 - Two (2) soil samples from each boring (30 total) were analyzed in accordance with Environmental Protection Agency (EPA) Method 8260 for Volatile Organic Compounds (VOCs), 8015M for Total Petroleum Hydrocarbons (TPH), and 6010B for Title 22 Metals.
 - The shallow soil samples from each boring were also analyzed for organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) in accordance with EPA Methods 8081A, and 8141A, respectively.
 - The deep soil samples from the Flagler Lot (borings B11 through B15) were analyzed for semi-volatile organic compounds (SVOCs) in accordance with EPA Method 8270C.
 - All soil vapor samples were analyzed for VOCs in accordance with EPA Test Method 8260B. In addition, each of the soilvapor probes were screened for methane using a LandTech GEM 5000. Static pressure, and concentrations of oxygen and carbon dioxide were also screened.
- Ambient air samples were collected from one (1) exterior and five (5) interior locations.

3.2 Soil Sample Collection

On October 22 and 23rd, 2019, a total of 15 borings were completed using direct-push (Geoprobe) drilling methods. One (1) boring (BC1) was completed to a depth of 30-feet bgs. The other 14 borings (BC2 through BC15) were completed to depths of 15-feet bgs. The approximate boring locations are indicated on Figure 3, Sample Locations.

Soil samples were collected in acetate sleeves at depths of 2, 5, 10, 20, and 30-feet from location BC1, and from depths of 2, 5, 10, and 15-feet bgs from the other 14 locations. Encore sample containers were used to collect subsamples of soil from each sleeve in accordance with EPA Method 5035 for potential analysis for VOCs. A portion of each sample was also screened in the field for VOCs using a photo-ionization detector (PID).

3.3 Soil Vapor Probe Construction and Sampling

Soil vapor probes were constructed using a two-inch porous soil vapor implant connected to ¼-inch Teflon tubing. The implants were surrounded by an approximate 1-foot sand pack that extended slightly above and below the implant. The remainder of each borehole was filled with hydrated bentonite granules. After installation, the probes were allowed to equilibrate for a minimum of 2 hours before they were purged and sampled.

Soil vapor samples were collected by a mobile laboratory at a flow rate of 200 milliliters per minute. Soil vapor sampling was completed in general accordance with the Advisory-Active Soil Gas Investigations by the California Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board (RWQCB), dated July 2015.

3.4 Methane Screening

After installation, the probes were allowed to equilibrate for a minimum of 96 hours before being screened. A second round of screening was conducted approximately 24 hours after the initial screening. The screening was conducted using a GEM 5000 landfill gas analyzer. The analyzer was used to initially check the probes for pressure. The lines were then purged and readings of gas concentrations were recorded. The meter measures concentrations of methane, carbon dioxide, oxygen, hydrogen sulfide, and carbon monoxide.

3.5 Indoor Air Sample Collection

Review of the initial soil vapor analytical data identified compounds present at concentrations in excess of their respective screening levels. Based on these findings a determination was made to expand the scope of the assessment to evaluate for potential vapor intrusion impacts to the indoor air. On December 20, 2019 Converse returned to the Site and placed sample canisters at five (5) interior locations, as well as at one (1) exterior location to evaluate background concentrations. Ambient air samples were collected in 6-liter summa canisters over a 24-hour period. The rooms in which the canisters were placed were generally closed during the sampling period, and included an office (CP-Office), a vacant suite (510-129), a storage room within a parking garage (520-8), and equipment rooms (514-SF-1 and 514-AH-10). The background sample (Ambient) was collected from the central plant courtyard. Sample locations are indicated on Figure 3. The sample containers were closed and retrieved from the site on December 21, 2019.

3.6 Field Quality Assurance/Quality Control

The following are some of the quality assurance and quality control measures that were taken to evaluate the quality of the data generated:

- Standard EPA sample handling protocol including chain-of-custody control were followed.
- New dedicated sampling equipment (Teflon tubing, acetate sleeves, encore containers) were used for the collection of samples.
- Reusable sampling equipment (cutting shoe) was decontaminated between uses.
- A shut-in test was conducted prior to the purging of soil vapor probes, and tracer gas was applied during the collection of samples, to evaluate the integrity of the fitting.

3.7 Chemical Analytical Methods

All soil and soil-vapor samples were submitted under chain of custody documentation to Jones Environmental, Inc. in Santa Fe Springs, California. The ambient air samples were delivered to Air Technology Laboratories, Inc. in City of Industry, California. Both labs are certified by the State of California Department Health Services for the analyses conducted.

Two (2) soil samples from each boring (30 total) were analyzed in accordance with EPA Method 8260 for VOCs, 8015M for TPH, and 6010B for Title 22 Metals.

The shallow soil samples from each boring were also analyzed for OCPs and OPPs in accordance with EPA Methods 8081A, and 8141A, respectively.

The deep soil samples from the Flagler Lot (boring B11 through B15) were analyzed for SVOCs in accordance with EPA Method 8270C.

All soil vapor samples were analyzed in onsite mobile laboratories for VOCs in accordance with EPA Test Method 8260B. In addition, each of the soil-vapor probes was screened for methane using a LandTech GEM 5000.

All ambient air samples were analyzed for VOCs in accordance with EPA Test Method TO-15 SIM.

4.0 Presentation and Evaluation of Results

4.1 Subsurface Conditions

During drilling activities, subsurface soils were observed to primarily be sandy with minor amounts of silt across the Site to depths of 30-feet bgs. Groundwater was not encountered in any of the borings completed to a maximum depth of 30-feet bgs during this assessment.

4.2 Analytical Results

A summary of the results is provided below. Copies of the laboratory analytical reports are included in Appendix A.

4.2.1 Soil Samples

Ten (10) metals were reported in the soil samples: barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, vanadium, and zinc. All the metals were reported at concentrations less than the residential screening levels, and less than their hazardous waste thresholds.

TPH in the heavy oil range was detected in two (2) samples, BC14-2 and BC15-2 at concentrations of 20.9 and 123 milligrams per kilogram (mg/kg), respectively. Both concentrations are below the screening level of 180,000 mg/kg. TPH in the gasoline and diesel ranges was not detected in any of the samples analyzed.

Concentrations of the OCPs 4,4' DDE and 4,4'-DDT were detected in sample BC10-2 at concentrations of 254 and 30 micrograms per kilogram (ug/kg), respectively. These concentrations are below their residential screening levels of 2,000 mg/kg, and 1,900 ug/kg, respectively. No other OCPs were identified in any of the samples analyzed.

No OPPs, VOCs, or SVOCs were detected in the soil samples analyzed.

Tabulated data for soil samples are presented in Tables 1 and 2.

4.2.2 Soil Vapor Samples

The following 16 VOCs were detected in one or more of the soil-vapor samples:

benzene tetrachloroethylene (PCE)

chloroform toluene

dichlorodifluoromethane trichloroethylene (TCE)

1,1-dichloroethene trichlorotrifluoromethane
ethylbenzene 1,2,4-trimethylbenzene
4-isopropyltoluene 1,3,5-trimethylbenzene

n-propylbenzene m,p-xylene styrene o-xylene

Tabulated soil vapor data is presented in Table 3.

All contaminant concentrations were compared to regulatory screening levels (SLs). The primary screening levels used were the Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) for soil vapor samples. For those compounds with no established ESLs (dichlorodifluoromethane, trichlorotrifluoromethane, 4-isopropyltoluene, and n-propylbenzene) soil vapor screening levels were calculated by applying an attenuation factor (AF) of 0.03 to the indoor air screening levels published by the Department of Toxic Substances Control (DTSC) or US Environmental Protection Agency (EPA).

- 13 of the 16 VOCs were detected at levels below their screening levels for residential land use.
- Benzene was detected in two (2) samples. Sample BC7-5 had a concentration of 8.0 micrograms per cubic meter (ug/m³). The concentration exceeds the residential SL for benzene of 3.2 ug/m³, but is below the SL for commercial land use of 14 ug/m³. Sample BC6-15 had a benzene concentration of 22 ug/m³ which exceeds both the residential and commercial SLs.
- Chloroform was detected in four (4) samples, BC4-15, BC9-5, BC10-5, and BC10-15 at concentrations of 8, 54, 27, and 26 ug/m³, respectively. All of these concentrations exceed the residential SL of 4.1 ug/m³, and with the exception of sample BC4-15, the concentrations also exceeded the commercial SL of 18 ug/m³.
- PCE was detected in 29 of the 30 soil-vapor samples at a maximum concentration of 2,290 ug/m³ in sample BC14-15. Five (5) of the reported concentrations are less than the residential SL of 15 ug/m³, and concentrations in 4 of the samples exceeded the

residential SL but are less than the commercial SL of 67 ug/m³. The remaining 20 concentrations exceed the commercial SL.

4.2.3 Methane Screening Results

A methane screening of each of the 30 soil vapor probes was conducted on October 28, 2019, and then a second screening was conducted a full 48 hours later on October 30. The screening was conducted using a Landtec GEM 5000 gas analyzer. Fixed gases that were monitored included methane, carbon dioxide, oxygen, hydrogen sulfide, and carbon monoxide. Pressure in each vapor probe was measured and recorded during the second screening event prior to analyzing gas concentrations.

During each screening event methane was noted to be measured by the instrument in background readings at a concentration of 0.1 parts per million by volume (ppmv). Methane concentrations were not detected at levels exceeding the measured background reading of 0.1 ppmv in any of the soil vapor probes during either screening event.

The maximum pressure measured was 0.70 inches of water in probe BC19-15.

Methane screening data is presented in Table 4.

4.2.4 Ambient Air Samples

The following 22 VOCs were detected in one or more of the ambient air samples:

Benzene Methylene Chloride

Bromodichloromethane Tetrachloroethylene (PCE)
Carbon Tetrachloride Trichloroethylene (TCE)

Chloroethane Toluene

Chloromethane Trichlorofluoromethane (II)
Chloroform Trichlorotrifluoroethane
Dichlorodifluoromethane 1,1,2,2-Tetrachloroethane

Ethylbenzene Styrene

1,2-Dichloroethanet-1,2-Dichloroethene1,2-Dichloropropanevinyl Chloridem,p-xyleneo-xylene

Tabulated ambient air sample data is presented in Table 5.

All contaminant concentrations were compared to regulatory screening levels (ESLs, DTSC SLs, or EPA RSLs).

- Sixteen (16) of the 22 VOCs detected in ambient air samples (including PCE and TCE) were detected at maximum concentrations less than their respective screening levels for residential land use.
- Six (6) VOCs were reported in one (1) or more of the ambient air samples in excess of their residential SL: benzene, bromodichloromethane, chloroform, ethylbenzene, 1,1,2,2-tetrachloroethane, and vinyl chloride.
 - Three (3) of these compounds (bromodichloromethane, 1,1,2,2-tetrachloroethane, and vinyl chloride) were only reported in a single ambient air sample, and were not detected in any of the soil vapor samples.
 - Benzene and chloroform were the only compounds detected in soil vapor samples and above their residential screening level in multiple ambient air samples. With the exception of the sample collected from the parking garage storage room (520-8), the concentrations of these compounds in ambient air samples were generally consistent with the concentrations reported in the background outdoor air sample.

4.3 Data Quality Assurance/Quality Control

4.3.1 Hold Times

All soil samples were transported to the laboratory under chain-of-custody documentation and were analyzed within appropriate hold times.

All soil-vapor samples were collected by mobile laboratory personnel and analyzed onsite within appropriate hold times.

4.3.2 Laboratory Quality Assurance

The laboratories provided data to estimate precision, accuracy, and bias. The laboratory reports indicated that the method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives for soil and soil vapor.

4.3.3 Practical Quantitation Limits

Practical quantitation limits (PQL) and method detection limits (MDL) for soil and soil vapor samples were provided by the laboratories. The PQLs for the various analytes were as follows:

- VOCs in soil vapor ranged from 8.0 to 400 μg/m³.
- VOCs in ambient air ranged from 0.013 to 0.17 μg/m³.
- VOCs in soil ranged from 1.0 to 50 μg/kg.
- SVOCs in soil ranged from 100 to 1,000 μg/kg.
- TPH ranged from 1.0 to 10.0 ug/kg.
- Metals ranged from 0.02 to 5.0 mg/kg.
- Organochlorine pesticides ranged from 10 to 20 ug/kg.
- Organophosphorus pesticides ranged from 0.005 to 0.010 mg/kg.

5.0 Interpretation and Conclusions

5.1 RECs and Potential Release Area(s)

Converse completed a Phase I ESA for the Site, dated May 15, 2019. The assessment revealed no evidence of (RECs) in connection with the Site. However, the following on-site environmental concerns that do not rise to the level of a REC were noted:

- The 10,000-gallon diesel-fuel UST currently operating at the Site.
- The location of the Site within the Torrance Oil Field, and the presence of an abandoned oil well on Parcel 2.

The following adjoining and adjacent environmental concerns were also noted:

- The current operation of a Shell Service Station on the northwestern adjoining property (1200 Beryl Street).
- The former dry cleaners that operated at the northwestern adjoining property (1232 Beryl Street).
- The former landfill located on northeastern adjoining property (200 Flagler Lane).

5.2 Conceptual Model Validation/Adequacy of Investigations

It is our opinion that the field and analytical data validated the conceptual model.

5.3 Absence, Presence, Degree, Extent of Target Analytes

Soil: No compounds were reported in the soil samples at concentrations in excess of their respective screening levels.

Soil Vapor: Three (3) VOCs were reported at concentrations in excess of their respective screening levels; benzene, chloroform, and PCE.

 PCE was detected in 24 of the 30 samples at concentrations in excess of the residential SL. Several of the concentrations were also significantly in excess of the commercial SL. The former dry cleaners that operated at the northwestern adjoining property is suspected to be the source of the PCE, as concentrations generally decrease to the south across the Site with distance from the cleaners location

- Benzene was detected in two (2) of the 30 samples with one (1) sample in excess of the residential SL, and one (1) sample in excess of both the residential and commercial SLs. The detections were in samples from locations BC6 and BC7 in the northcentral portion of the Site. Based on the lack of benzene detections at location BC1, BC8, and BC9, the Shell Service Station on the northwestern adjoining property (1200 Beryl Street) does not appear to be a potential source. Leaks from automobiles in the parking lots are a potential source of benzene.
- Chloroform was detected in four (4) of the 30 samples. The detections were in samples from locations BC4, BC9, and BC10 in the southern portion of the Site. One (1) sample exceeded the residential SL, and three (3) samples exceeded both the residential and commercial SLs. Sources of the chloroform detected are unknown, but may potential include leaky water pipes, as chloroform is a byproduct of the chlorination process used in most municipally supplied drinking water.

Methane Screening: Methane was not detected in any of the probes at concentrations greater than the background concentration of 0.1 ppmv. Significant positive pressure was also not detected in any of the probes. Therefore, the Site does not appear to be impacted as a result of being located within the Torrance Oil Field, or from the former landfill located on northeastern adjoining property (200 Flagler Lane).

Ambient Air: Based on the reported VOC concentrations in soil vapor samples, ambient air samples were collected to evaluate for potential impacts from vapor intrusion. The three (3) VOCs reported in soil vapor samples at concentrations in excess of their respective residential screening levels were reported as follows in the ambient air samples;

- PCE was reported at a maximum concentration of 0.25 ug/m³, which is less than the residential SL for indoor air of 0.46 ug/m³. All reported concentrations of PCE in indoor air samples were generally consistent with the concentration of 0.16 ug/m³ reported in the background outdoor air sample. The concentrations of PCE detected in indoor air samples are likely to be related to background levels present in the ambient air rather than from concentrations in the subsurface that may have intruded through the building foundation.
- Benzene and chloroform were detected in excess of their residential SLs for indoor air in all samples, but with one (1) exception (parking garage storage room) all indoor air samples are generally similar to the background concentrations reported in the outdoor air samples. The elevated concentration of benzene and chloroform in the sample from the parking garage storage room (520-8) are likely related to exhaust from vehicles or disinfection/cleaning products. The concentrations detected in all other indoor air samples are likely to be related to background levels

present in the ambient air rather than from concentrations in the subsurface that may have intruded through the building foundation.

All other compounds reported in indoor air samples are suspected to related to either background concentrations present in the ambient air or from sources other than vapor intrusion.

5.4 Other Concerns

5.4.1 Significant Assumptions

No significant assumptions were made during this assessment.

5.4.2 Limitations and Exceptions

No limitations or exceptions were encountered during this investigation.

5.4.3 Special Terms and Conditions

No special terms or conditions need to be noted in this *Phase II ESA* report.

5.5 Conclusions/Objectives Met

Converse has performed a *Phase II ESA* at 510, 512, 514, and 520 North Prospect Avenue, and the adjoining vacant parcel located at Flagler Lane and Beryl Street (Flagler lot) in Redondo Beach, California, in conformance with the scope and limitations of ASTM, E1903-11 and the following objectives:

- Evaluate environmental concerns in connection with the Site that were identified during a Phase I ESA conducted by Converse.
- Identify if potential target analytes are present at concentrations greater than threshold criteria.

Converse presents the following findings based on the results of this assessment:

- No analytes were reported in the soil samples at concentrations in excess of their respective screening levels.
- Methane was not detected in any of the probes at concentrations greater than the background concentration of 0.1 ppmv, and no significant positive pressure was detected in any of the probes.

- A total of 16 VOCs were detected in one or more of the 30 soil vapor samples. Only three (3) were reported at concentrations in excess of their respective screening levels; PCE, benzene, and chloroform.
 - OPCE was detected in 29 of the 30 soil-vapor samples at a maximum concentration of 2,290 ug/m³. Twenty-four (24) of the reported concentrations are greater than the residential SL of 15 ug/m³. The highest concentrations were generally detected in deeper samples from locations near the former drycleaner (BC7, BC12, BC13, BC14, and BC15).
 - Benzene was detected in two (2) samples (BC6-15 and BC7-5) at a maximum concentration of 22 ug/m³, which both exceed the residential SL of 3.2 ug/m³.
 - Chloroform was detected in four (4) samples (BC4-15, BC9-5, BC10-5, and BC10-15) at a maximum concentration of 54 ug/m³. All of these concentrations exceed the residential SL of 4.1 ug/m³.
- A total of 22 VOCs were detected in one or more of the 5 indoor air samples. Only six (6) were reported at concentrations in excess of their respective screening levels; benzene, bromodichloromethane, chloroform, ethylbenzene, 1,1,2,2-tetrachloroethane, and vinyl chloride.
 - PCE, the chemical considered to present the greatest potential vapor intrusion risk based on concentration in soil vapor samples, was reported at concentrations less than the residential screening level in all indoor air samples.
 - Three (3) of the compounds reported in indoor air samples at concentrations in excess of their residential screening levels (bromodichloromethane, 1,1,2,2-tetrachloroethane, and vinyl chloride) were only reported in a single ambient air sample, and were not detected in any of the soil vapor samples. The presence of these compounds in indoor air are not considered to be related to vapor intrusion.
 - Benzene and chloroform were the only compounds detected in soil vapor samples and above their residential screening level in multiple ambient air samples. With the exception of the sample collected from the parking garage storage room (520-8), the concentrations of these compounds in ambient air samples were generally consistent with the concentrations reported in the background outdoor air sample, and are not considered to be related to vapor intrusion.

Based on the findings of this assessment Converse concludes the following:

• Nearly the entire Site appears to be impacted by PCE in the soil vapor at concentrations in excess of the residential SL. The former dry cleaners that

operated at the northwestern adjoining property is suspected to be the source of the PCE, as concentrations generally decrease to the south across the Site with distance from the cleaners location. These concentrations present a potential vapor intrusion risk, but based on findings from this assessment it does not appear that the Site is currently being significantly impacted by vapor intrusion.

- There is no evidence of Site impacts as a result of being located within the Torrance Oil Field, or from the former landfill located on northeastern adjoining property (200 Flagler Lane).
- There is no evidence of Site impacts from the 10,000-gallon diesel-fuel UST currently operating at the Site, or from the service station on the northwestern adjoining property (1200 Beryl Street).
- Minor impacts from benzene and chloroform were identified at the Site.
 Sources for these compounds are unknown, but may include minor leaks from automobiles in the parking lot and leaks from water lines, respectively.

6.0 Recommendations

Further assessment does not appear to be necessary to achieve the objectives of this assessment. However, based on the findings of this assessment, further action does appear to be warranted related to impacts that are likely the result of releases from historical drycleaning operations at the northwestern adjoining property. Additional actions may include one or more of the following actions: incorporate gas mitigation measures into the design of future structures, conduct remedial actions to remove contaminants from beneath the Site, communication with the adjacent property owner, and consultation with applicable regulatory agencies.

7.0 Reliance

This report is for the sole benefit and exclusive use of Beach Cities Health District in accordance with the terms and conditions that are presented in our Proposal dated September 18, 2019 under which these services have been provided. The preparation of this report has been in accordance with generally accepted environmental practices. No other warranty, either express or implied, is made. This report should not be regarded as a guarantee that no further contamination beyond that which could be detected within the scope of this assessment is present at the Site.

This report should not be regarded as a guarantee that no further contamination, beyond that which could be detected within the scope of this assessment, is present at the Site. Converse makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others. It is possible that information exists beyond the scope of this assessment. It is not possible to absolutely confirm that no hazardous materials and/or substances exist at the Site. If none are identified as part of a limited scope of work, such a conclusion should not be construed as a guaranteed absence of such materials, but merely the results of the evaluation of the Site at the time of the assessment. Also, events may occur after the Site visit, which may result in contamination of the Site. Additional information, which was not found or available to Converse at the time of report preparation, may result in a modification of the conclusions and recommendations presented.

Any reliance on this report by Third Parties shall be at the Third Party's sole risk. Should Beach Cities Health District wish to identify any additional relying parties not previously identified, a completed Application of Authorization to Use (see following page) must be submitted to Converse Consultants.

Application for Authorization to Use

TO: **Converse Consultants** 3172 Pullman Street, Suite 108 Costa Mesa, California 92626 Project Title & Date: Project Address: FROM: (Please identify name & address of person/entity applying for permission to use the referenced report.) hereby applies for permission to use Applicant the referenced report in order to: Applicant wishes or needs to use the referenced report because: Applicant also understands and agrees that the referenced document is a copyrighted document and shall remain the sole property of Converse Consultants. Unauthorized use or copying of the report is strictly prohibited without the express written permission of Converse Consultants. Applicant understands and agrees that Converse Consultants may withhold such permission at its sole discretion, or grant such permission upon agreement to Terms and Conditions, such as the payment of a re-use fee, amongst others. Applicant Signature: Applicant Name (print): Title: Date:

8.0 References and Sources of Information

- California State Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board (RWQCB), Los Angeles Region, Advisory-Active Soil Gas Investigations, July 2015.
- Converse Consultants, Phase I Environmental Site Inspection Report, May 15, 2019.
- DTSC, Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011.
- DTSC, Human Health Risk Assessment (HHRA) Note Number 3, DTSC Modified Screening, April 2019.
- San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, August 2019.
- USEPA, Regional Screening Levels, November 2019

Figures

Figures

SITE VICINITY

Beach Cities Health District 510-520 North Prospect Avenue Redondo Beach, California

Project No:

18-41-296-02

Converse Consultants

FIGURE

1

SITE PLAN

Beach Cities Health District 510-520 North Prospect Avenue Redondo Beach, California

Project No:

18-41-296-02

Converse Consultants

FIGURE

2

SAMPLE LOCATIONS

Beach Cities Health District 510-520 North Prospect Avenue Redondo Beach, California

Project No:

18-41-296-02

Converse Consultants

FIGURE

Tables

Tables

Table 1 Summary of Analytical Results - Metals in Soil

Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	Sample Date												
		Barium	Cadmium	Chromium (Total)	Cobalt	Copper	Mercury	Lead	Nickel	Vanadium	Zinc	All Other Metals	
BC1-2	10/22/19	32.6	ND	8.8	3.0	2.7	ND	1.7	4.4	12.4	10.4	ND	
BC1-30	10/22/19	10.4	ND	6.2	1.3	1.5	ND	0.7	3.7	6.0	6.7	ND	
BC2-2	10/22/19	46.6	0.8	12.1	4.6	4.3	0.036	2.2	6.5	16.9	17.9	ND	
BC2-5	10/22/19	28.5	0.6	11.6	3.5	3.2	ND	1.6	4.3	14.5	13.5	ND	
BC3-2	10/22/19	26.3	0.6	21.5	5.1	3.7	0.058	1.8	7.6	13.8	13.1	ND	
BC3-5	10/22/19	21.1	0.6	17.1	4.0	2.8	0.100	1.3	7.4	15.5	10.2	ND	
BC4-2	10/22/19	28.7	0.5	16.0	2.7	2.6	0.033	1.4	7.9	12.4	11.3	ND	
BC4-5	10/22/19	27.2	0.7	26.6	4.6	3.0	0.052	1.6	9.1	17.0	11.6	ND	
BC5-2	10/22/19	21.2	ND	14.5	2.6	2.5	0.030	2.1	5.2	12.0	10.6	ND	
BC5-5	10/22/19	27.9	0.9	22.7	4.4	3.1	0.058	2.1	8.5	21.8	14.8	ND	
BC6-2	10/22/19	32.1	1.0	27.0	4.6	3.2	0.045	2.3	9.7	23.4	14.7	ND	
BC6-5	10/22/19	33.6	0.6	11.6	3.6	3.6	0.072	2.1	5.4	15.2	12.1	ND	
BC7-2	10/22/19	19.6	ND	11.2	2.3	2.9	0.036	2.9	6.3	12.0	11.8	ND	
BC7-5	10/22/19	17.8	ND	13.7	2.3	2.3	0.041	1.2	6.6	10.4	10.1	ND	
BC8-2	10/22/19	36.6	0.7	16.5	3.2	3.3	ND	2.0	5.9	15.4	12.0	ND	
BC8-5	10/22/19	14.0	ND	9.6	1.6	1.7	0.046	1.0	3.6	8.9	6.7	ND	
BC9-2	10/23/19	20.7	ND	15.4	3.4	2.7	0.078	1.6	4.9	12.0	31.6	ND	
BC9-5	10/23/19	17.6	ND	12.3	1.8	2.3	0.093	0.9	5.0	11.3	9.8	ND	
BC10-2	10/23/19	25.8	0.6	14.4	2.8	4.2	0.085	4.7	7.0	12.9	22.0	ND	
BC10-5	10/23/19	20.5	0.6	17.5	3.0	2.7	0.094	1.3	8.5	13.5	11.0	ND	
BC11-2	10/23/19	35.3	0.7	12.5	3.4	3.5	0.047	2.3	8.6	13.6	19.0	ND	
BC11-5	10/23/19	17.6	0.7	11.8	4.2	3.9	0.029	1.9	5.3	15.1	17.5	ND	
BC12-2	10/23/19	13.6	ND	8.4	2.1	2.0	0.141	1.1	3.3	9.0	7.2	ND	
BC12-5	10/23/19	26.5	0.7	28.6	3.0	3.3	0.234	1.5	7.7	18.4	12.6	ND	
BC13-2	10/23/19	24.6	0.5	10.3	4.1	2.8	0.043	1.4	3.9	12.5	11.0	ND	
BC13-5	10/23/19	48.0	1.0	30.1	6.0	5.4	0.088	2.4	11.2	23.5	18.5	ND	
BC14-2	10/23/19	35.1	0.6	11.1	3.2	4.0	0.042	7.6	6.6	14.6	23.1	ND	
BC14-5	10/23/19	17.9	ND	9.9	2.4	2.0	0.076	1.3	3.5	11.1	8.0	ND	
BC15-2	10/23/19	54.9	0.6	8.7	2.8	3.7	0.030	3.6	5.9	11.5	16.9	ND	
BC15-5	10/23/19	27.2	0.6	14.9	3.3	2.8	0.055	1.3	5.2	13.9	10.8	ND	
Screening Levels	DTSC / EPA	15,000	71	120,000	23	3,100	1.0	80	820	390	23,000		
Regulatory	TTLC	10,000	100	2,500	8,000	2,500	20	1,000	2,000	2,400	5,000		
Regulatory Thresholds	STLC*	100	1	5	80	25	0.2	5	20	24	250		
	TCLP*	100	1	5			0.2	5					

mg/kg = Milligrams per Kilogram ug/kg = Micrograms per Kilogram mg/L = Milligrams per Liter ug/L = Micrograms per Liter ND = Not Detected TTLC = Total Threshold Limit Concentration
STLC = Soluble Threshold Limit Concentration
TCLP = Toxicity Characteristic Leaching Procedure
* STCL and TCLP values in units of mg/L

Table 2 Summary of Analytical Results - Non-Metals in Soil

Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	Sample Date		TPH (mg/kg)			OCPs (ug/kg)		OPPs (ug/kg)	VOCs (ug/kg)	SVOCs (ug/kg)
, .		Gasoline	Diesel	Oil	4,4'-DDE	4,4'-DDT	All Other OCPs	All OPPs	All VOCs	All SVOCs
BC1-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC1-30	10/22/19	ND	ND	ND	NA	NA NA		NA	ND	NA
BC2-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC2-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC3-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC3-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC4-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC4-5	10/22/19	ND	ND	ND	ND	ND	ND	NA	ND	NA
BC5-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC5-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC6-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC6-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC7-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC7-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC8-2	10/22/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC8-5	10/22/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC9-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC9-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC10-2	10/23/19	ND	ND	ND	254	30.0	ND	ND	ND	NA
BC10-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	NA
BC11-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC11-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC12-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC12-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC13-2	10/23/19	ND	ND	ND	ND	ND	ND	ND	ND	NA
BC13-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC14-2	10/23/19	ND	ND	20.9	ND	ND	ND	ND	ND	NA
BC14-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
BC15-2	10/23/19	ND	ND	123	ND	ND	ND	ND	ND	NA
BC15-5	10/23/19	ND	ND	ND	NA	NA	NA	NA	ND	ND
Screening Levels	DTSC / EPA	2,000	1,200	180,000	2,000	1,900				
Regulatory	TTLC					000				
Regulatory Thresholds	STLC*					00				
	TCLP*									

mg/kg = Milligrams per Kilogram ug/kg = Micrograms per Kilogram mg/L = Milligrams per Liter ug/L = Micrograms per Liter ND = Not Detected TPH = Total Petroleum Hydrocarbons TT

OCPs = Organochlorine Pesticides ST

OPPs = Organophosphorus Pesticides TC

VOCs = Volatile Organic Compounds * S

SVOCs = Semi-volatile Organic Compounds

TTLC = Total Threshold Limit Concentration
STLC = Soluble Threshold Limit Concentration
TCLP = Toxicity Characteristic Leaching Procedu
* STCL and TCLP values in units of mg/L

Table 3 Summary of Soil Analycail Results - VOCs in Soil Vapor

Beach Cities Health District 510-520 N. Prospect Avenue Redondo Beach, California

Sample ID	Depth (feet bgs)	Date	Benzene	Chloroform	Dichlorodifluoromethane (Freon 13)	1,1-Dichloroethene	Ethylbenzene	4-Isopropyltoluene	n-Propylbenzene	Styrene	Tetrachloroethylene (PCE)	Toluene	Trichloroethylene (TCE)	Trichlorotrifluoromethane (Freon 11)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m,p-Xylenes	o-Xylene	All Other VOCs
BC1-20	20	10/31/2019	ND	ND	68	ND	ND	ND	ND	ND	912	ND	ND	ND	14	ND	ND	ND	ND
DO 1-20	20	10/31/2019	ND	ND	66	ND	ND	ND	ND	ND	925	ND	ND	10	13	ND	ND	ND	ND
BC1-30	30	10/31/2019	ND	ND	81	ND	ND	ND	ND	ND	932	ND	ND	ND	12	ND	ND	ND	ND
BC2-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	9	46	ND	ND	ND	19	ND	ND	ND	ND
BC2-15	15	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	8	ND	ND	ND	ND
BC3-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	10	19	ND	23	13	ND
BC3-15	15	10/31/2019	ND	ND	17	ND	ND	ND	ND	ND	14	ND	ND	12	16	ND	ND	ND	ND
BC4-5	5	10/31/2019	ND	ND	16	27	22	ND	10	12	38	45	ND	ND	64	25	76	32	ND
BC4-15	15	10/31/2019	ND	8	30	ND	ND	ND	ND	ND	106	ND	ND	ND	15	ND	ND	ND	ND
BC5-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	162	ND	ND	ND	19	ND	13	9	ND
BC5-15	15	10/31/2019	ND	ND	47	ND	22	ND	ND	9	370	18	ND	ND	24	8	105	45	ND
BC6-5	5	10/31/2019	ND	ND	41	ND	ND	ND	ND	ND	651	ND	ND	ND	18	ND	14	9	ND
BC6-15	15	10/31/2019	22	ND	114	ND	26	ND	ND	11	841	76	ND	10	36	15	95	35	ND
BC7-5	5	10/31/2019	8	ND	86	ND	21	ND	ND	11	1,300	54	ND	ND	24	8	77	31	ND
BC7-15	15	10/31/2019	ND	ND	21	ND	ND	ND	ND	ND	336	ND	ND	ND	8	ND	ND	ND	ND
BC8-5	5	10/31/2019	ND	ND	24	ND	ND	ND	ND	ND	207	ND	ND	ND	ND	ND	ND	ND	ND
BC8-15	15	10/31/2019	ND	ND	23	ND	ND	76	ND	ND	211	ND	ND	ND	10	ND	ND	ND	ND
BC9-5	5	10/31/2019	ND	54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BC9-15	15	10/31/2019	ND	ND	11	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
BC10-5	5	10/31/2019	ND	27	ND	ND	ND	ND	ND	ND	27	8	ND	ND	9	ND	33	10	ND
BC10-15	15	10/31/2019	ND	26	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND
BC11-5	5	10/31/2019	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
BC11-15	15	10/31/2019	ND	ND	37	ND	ND	ND	ND	ND	573	ND	ND	ND	ND	ND	ND	ND	ND
	_		ND	ND	15	ND	ND	ND	ND	ND	286	ND	ND	ND	ND	ND	17	ND	ND
BC12-5	5	10/31/2019	ND	ND	14	ND	ND	ND	ND	ND	263	ND	ND	ND	ND	ND	ND	ND	ND
BC12-15	15	10/31/2019	ND	ND	54	ND	ND	ND	ND	ND	1,450	ND	ND	24	ND	ND	20	9	ND
BC13-5	5	10/31/2019	ND	ND	15	ND	ND	ND	ND	ND	441	ND	ND	ND	ND	ND	ND	ND	ND
BC13-15	15	10/31/2019	ND	ND	66	ND	ND	ND	ND	ND	1,710	ND	ND	ND	ND	ND	ND	ND	ND
BC14-5	5	10/31/2019	ND	ND	26	ND	ND	ND	ND	ND	796	ND	ND	ND	ND	ND	ND	ND	ND
BC14-15	5	10/31/2019	ND	ND	73	ND	ND	ND	ND	ND	2,290	ND	ND	ND	ND	ND	ND	ND	ND
BC15-5	5	10/31/2019	ND	ND	14	ND	ND	ND	ND	ND	406	ND	ND	ND	ND	ND	ND	ND	ND
BC15-15	15	10/31/2019	ND	ND	62	ND	ND	ND	ND	ND	1,800	ND	12	ND	ND	ND	ND	ND	ND
Maxin	num Concer	ntration	22	54	114	27	26	76	10	12	2,290	76	12	24	64	25	105	45	
Soil V Screenin		Residential	3.2	4.1	3,333	2,400	37	_	33,333	31,000	15	10,000	16	43,333	2,100	2,100	3,500	3,500	
(ug/r	0	Commercial / Industrial	14	18	14,667	10,000	160	-	146,667	130,000	67	44,000	100	176,667	8,666	8,666	15,000	15,000	

all concentrations in micrograms per cubic meter (ug/m³)

Soil vapor screening levels based on published ESLs, or calculated from HHRA or RSL values using and Attenuation Factor (AF) of 0.03

HHRA = DTSC Human Health Risk Assessment Note 3 Screening Levels (April 2019)

RSL = EPA Regional Screening Level (November 2019)

ND = Not detected

bgs = below ground surface

ESL = RWQCB Environmental Screening Levels (August 2019)

Table 4 Methane Screening Results

Beach Cities Health District

510-520 N. Prospect Avenue Redondo Beach, California

Boring	Depth		Differential	Methane	Carbon	Oxygen	Hydrogen	Carbon	Balance	Barometric
ID	(feet)	Date	Pressure	(ppmv)	Dioxide					Pressure
	(1001)		(inches H ₂ O)		(%)		(ppmv)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(inches Hg)
	20	10/28/2019	NA	0.1	3.7					29.74
BC1	20	10/30/2019	-0.10	0.1	3.7					29.81
	30	10/28/2019	NA	0.1	3.9					29.74
	00	10/30/2019	-0.14	0.1	3.9					29.81
	5	10/28/2019	NA	0.1	6.5					29.67
BC2		10/30/2019	-0.03	0.1	6.5					29.79
502	15	10/28/2019	NA	0.1	6.8					29.67
		10/30/2019	-0.12	0.1	6.8					29.79
	5	10/28/2019	NA	0.1	2.3					29.71
вс3		10/30/2019	0.00	0.1	1.4					29.83
	15	10/28/2019	NA	0.1	1.5	de Oxygen Sulfide Monoxide Balanco		29.71		
		10/30/2019	-0.06	0.1	1.5					29.83
	5	10/28/2019	NA	0.1	1.3					29.70
BC4		10/30/2019	0.01	0.1	1.3					29.84
	15	10/28/2019	NA	0.1	0.7					29.70
		10/30/2019	-0.09	0.1	0.7					29.84
	5	10/28/2019	NA 0.00	0.1	3.1					29.72
BC5		10/30/2019	0.00	0.1	3.0					29.86
	15	10/28/2019	NA 0.00	0.1	1.9					29.72
		10/30/2019	0.00	0.1	1.9					29.86
	5	10/28/2019	NA 0.04	0.1	1.5					29.73
BC6		10/30/2019 10/28/2019	-0.01 NA	0.1 0.1	1.5 2.0					29.90 29.73
	15									
		10/30/2019	0.01 NA	0.1	1.9					29.90
BC7	5	10/28/2019 10/30/2019	-0.02	0.0	3.0 3.0					29.73 29.93
		10/30/2019	-0.02 NA	0.0	6.3					29.93
	15	10/20/2019	-0.09	0.0	6.6					29.73
	5 15	10/28/2019	-0.09 NA	0.0	3.6					29.75
		10/20/2019	-0.03	0.1	3.4					29.75
BC8		10/28/2019	-0.03 NA	0.1	3.7					29.75
BC8		10/30/2019	-0.05	0.1	3.7					29.94
		10/28/2019	NA	0.1	0.9					29.75
	5	10/30/2019	0.01	0.1	0.9					29.94
BC9		10/28/2019	NA	0.1	1.9					29.75
	15	10/30/2019	0.70	0.1	1.9					29.94
		10/28/2019	NA	0.1	1.3					29.75
	5	10/30/2019	0.01	0.1	1.0					29.93
BC10		10/28/2019	NA	0.1	2.0					29.75
	15	10/30/2019	-0.04	0.0	2.0					29.93
	_	10/28/2019	NA	0.1	0.5					29.75
DO44	5	10/30/2019	0.01	0.1	0.5					29.75
BC11	4.5	10/28/2019	NA	0.1	4.3	16.2	0.0	0.0	79.4	29.75
	15	10/30/2019	-0.06	0.1	4.5		0.0	0.0		29.75
	_	10/28/2019	NA	0.1	1.1	19.3	0.0	0.0	79.5	29.78
DC40	5	10/30/2019	0.02	0.1	1.0	18.9	0.0	0.0	80.0	29.78
BC12	15	10/28/2019	NA	0.1	4.4	15.8	0.0	0.0	79.8	29.78
	15	10/30/2019	-0.08	0.1	4.6	15.4	0.0	0.0	79.9	29.78
	5	10/28/2019	NA	0.1	1.0	19.6	0.0	0.0	79.3	29.80
BC13	5	10/30/2019	0.01	0.1	1.0	19.2	0.0	0.0	79.7	29.80
БСТЗ	15	10/28/2019	NA	0.1	3.6	16.7	0.0	0.0	79.6	29.80
	15	10/30/2019	-0.11	0.1	3.7	16.4	0.0	0.0	79.9	29.80
	5	10/28/2019	NA	0.1	1.6	19.1	0.0	0.0	79.2	29.80
BC14	<u> </u>	10/30/2019	-0.08	0.1	1.6	18.9	0.0	0.0	79.4	29.80
DC 14	15	10/28/2019	NA	0.1	3.6	16.8	0.0	0.0	79.5	29.80
	10	10/30/2019	-0.14	0.1	3.8	16.6	0.0	0.0	79.5	29.80
	5	10/28/2019	NA	0.1	2.3		0.0	0.0		29.80
BC15		10/30/2019	0.01	0.1	2.2		+			29.81
DC 13	15	10/28/2019	NA	0.1	4.8	15.8	0.0			29.80
		10/30/2019	-0.12	0.0	4.8					29.81

Table 5 Summary of Analytical Results VOCs in Indoor/Outdoor Air Beach Cities Health District

510-520 N. Prospect Avenue Redondo Beach, California

Sample ID Location Description	K122301-0I (510-129) Vacant Room	K122301-02 (520-8) Parking Garage Storage Room	KI22301-05 (514-SF-1) Equipment Room	K122301-06 (514-AH-10) Equipment Room	K122301-03 (CP-Office) Central Plant Office	K122301-04 (Ambient) Outdoor / Background	Maximum Concentration (ug/m³)	Indoor Air Screening Levels (ug/m³)	
Sample Date	11/21/2019	11/21/2019	11/21/2019	11/21/2019	11/21/2019	11/21/2019	(ug/iii)	Residential	Commercial
Tetrachloroethene (PCE)	0.22	0.21	0.16	0.25	0.17	0.16	0.25	0.46	2.0
Trichloroethene (TCE)	ND	0.07	ND	ND	0.056	ND	0.07	0.48	3.0
1,1,2,2-Tetrachloroethane	ND	ND	ND	0.15	ND	ND	0.15	0.048	0.21
1,2-Dichloroethane	0.074	0.079	0.077	0.078	0.1	0.075	0.10	0.11	0.47
t-1,2-Dichloroethene	ND	0.055	ND	ND	0.041	ND	0.06	83	350
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	0.00	0.28	1.2
Benzene	1.5	7.0	1.4	1.3	1.3	1.3	7.00	0.097	0.42
Bromodichloromethane	0.14	ND	ND	ND	ND	ND	0.14	0.076	0.33
Carbon Tetrachloride	0.46	0.47	0.46	0.44	0.44	0.45	0.47	0.47	2.0
Chloroethane	0.031	0.18	0.14	0.17	0.19	0.04	0.19	10,000	44,000
Chloromethane	1.0	1.4	1.0	1.0	1.0	1.0	1.40	94	390
Chloroform	0.42	2.6	0.17	0.35	0.15	0.18	2.60	0.12	0.53
Ethylbenzene	0.72	1.4	0.65	0.61	0.69	0.59	1.40	1.1	4.9
Dichlorodifluoromethane (Freon 12)	2.1	2.1	2.1	2.0	2.1	2.0	2.10	100	440
Trichlorotrifluoroethane (Freon 113)	0.50	0.50	0.50	0.48	0.48	0.48	0.50	5,200	10,000
Methylene Chloride	0.56	0.69	0.58	0.59	0.58	0.72	0.72	1	12
o-Xylene	0.95	1.7	0.85	0.79	0.97	0.78	1.70	100	440
p,m-Xylene	2.5	4.0	2.2	2.2	2.5	2.0	4.00	100	440
Styrene	0.33	1.3	0.32	0.27	0.3	0.31	1.30	3,900	3,900
Toluene	4.6	6.8	4.1	3.8	4.4	3.7	6.80	310	1,300
Trichlorofluoromethane (II)	1.2	1.2	1.2	1.2	1.2	1.2	1.20	1,300	5,300
Vinyl Chloride	ND	ND	ND	0.013	ND	ND	0.01	0.0095	0.16

Screening levels based on RWQCB Environmental Screening Levels (ESLs), DTSC HHRA Note 3, or EPA Regional Screening levels (RSLs) All concentrations in micrograms per cubic meter (ug/m^3)

ND - Not Detected Above Method Detection Limit (MDL)

-- Denotes No Screening Level

Converse Project No. 18-41-296-02

Application for Authorization to Use

Appendix A

Application for Authorization to Use

TO: Converse Consultants 3172 Pullman Street, Suite 108 Costa Mesa, California 92626 Project Title & Date: Project Address: FROM: (Please identify name & address of person/entity applying for permission to use the referenced report.) hereby applies for permission to use Applicant the referenced report in order to: Applicant wishes or needs to use the referenced report because: Applicant also understands and agrees that the referenced document is a copyrighted document and shall remain the sole property of Converse Consultants. Unauthorized use or copying of the report is strictly prohibited without the express written permission of Converse Consultants. Applicant understands and agrees that Converse Consultants may withhold such permission at its sole discretion, or grant such permission upon agreement to Terms and Conditions, such as the payment of a re-use fee, amongst others. Applicant Signature: Applicant Name (print): Title: Date:

Analytical Reports

Appendix B

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

 Project:
 BCHD

 Date Received:
 10/31/2019

 Date Analyzed:
 10/31/2019

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

ANALYSES REQUESTED

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of collection.

Approval:

Steve Jones, Ph.D. Laboratory Manager

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvenuePhysical State:Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-11-5'	BC-11-15'	BC-12-5'	BC-12-5' REP	BC-12-15'		
Jones ID:	F-0345-01	F-0345-02	F-0345-03	F-0345-04	F-0345-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	37	15	14	54	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics							
Sample ID:	вс-11-5'	BC-11-15'	BC-12-5'	BC-12-5' REP	BC-12-15'	ge Organics	
Jones ID:	F-0345-01	F-0345-02	F-0345-03	F-0345-04	F-0345-05	Reporting Limit	Units
Analytes:							0 11145
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	10	573	286	263	1450	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	24	16	
	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3
1,2,4-Trimethylbenzene							μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	17	ND	20	16	μg/m3
o-Xylene	ND	ND	ND	ND	9	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
Dibromofluoromethane	102%	108%	103%	104%	104%	60 - 140)
Toluene-d ₈	103%	102%	101%	99%	100%	60 - 140)
4-Bromofluorobenzene	87%	90%	88%	91%	85%	60 - 140)

ND = Value below reporting limit

01

01

Batch ID:

01

01

F1-103119- F1-103119- F1-103119- F1-103119-

01

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvenuePhysical State:Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC-13-5' BC-13-15' BC-14-5' BC-14-15' BC-15-5' Jones ID: F-0345-06 F-0345-07 F-0345-08 F-0345-09 F-0345-10 **Reporting Limit Units Analytes:** Benzene ND ND ND ND ND 8 $\mu g/m3$ 8 Bromobenzene ND ND ND ND ND $\mu g/m3$ 8 Bromodichloromethane ND ND ND ND ND $\mu g/m3$ Bromoform ND ND ND ND ND 8 $\mu g/m3$ 12 n-Butylbenzene ND ND ND ND ND $\mu g/m3$ sec-Butylbenzene ND ND ND ND ND 12 $\mu g/m3$ 12 tert-Butylbenzene ND ND ND ND ND $\mu g/m3$ Carbon tetrachloride ND ND ND ND ND 8 $\mu g/m3$ 8 Chlorobenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 Chloroform ND ND ND $\mu g/m3$ 2-Chlorotoluene ND ND ND ND ND 12 $\mu g/m3$ 4-Chlorotoluene ND ND 12 ND ND ND $\mu g/m3$ 8 Dibromochloromethane ND ND ND ND ND $\mu g/m3$ 8 1,2-Dibromo-3-chloropropane ND ND ND ND ND $\mu g/m3$ $\mu g/m3$ 1,2-Dibromoethane (EDB) ND ND ND ND ND 8 8 Dibromomethane ND ND ND ND ND $\mu g/m3$ 1,2- Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,3-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,4-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ Dichlorodifluoromethane 26 8 15 66 73 14 $\mu g/m3$ 8 1,1-Dichloroethane ND ND ND ND ND $\mu g/m3$ 8 1,2-Dichloroethane ND ND ND ND ND $\mu g/m3$ ND ND ND ND ND 8 1.1-Dichloroethene $\mu g/m3$ 8 ND ND ND ND ND $\mu g/m3$ cis-1,2-Dichloroethene 8 trans-1,2-Dichloroethene ND ND ND ND ND $\mu g/m3$ 1,2-Dichloropropane ND ND ND ND ND 8 $\mu g/m3$ 8 1,3-Dichloropropane ND ND ND ND ND $\mu g/m3$ 2,2-Dichloropropane ND ND ND ND ND 16 $\mu g/m3$ 1,1-Dichloropropene ND ND ND ND ND 10 $\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-13-5'	BC-13-15'	BC-14-5'	BC-14-15'	BC-15-5'		
Jones ID:	F-0345-06	F-0345-07	F-0345-08	F-0345-09	F-0345-10	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	441	1710	796	2290	406	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>ts</u>
Dibromofluoromethane	106%	104%	105%	104%	107%	60 - 140	
Toluene-d ₈	99%	100%	101%	100%	99%	60 - 140	
4-Bromofluorobenzene	88%	92%	88%	88%	90%	60 - 140	
Batch ID:	F1-103119- 01	F1-103119- 01	F1-103119- 01	F1-103119- 01	F1-103119- 01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

RC-0-51

RC-0-15'

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvenuePhysical State:Soil Gas

Redondo Beach, CA

RC-10-5'

RC-15-15'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

RC-10-15'

Sample ID:	BC-15-15'	BC-10-5'	BC-10-15'	BC-9-5'	BC-9-15'		
Jones ID:	F-0345-11	F-0345-12	F-0345-13	F-0345-14	F-0345-15	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	27	26	54	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	62	ND	ND	ND	11	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	μg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-15-15'	BC-10-5'	BC-10-15'	BC-9-5'	BC-9-15'		
Jones ID:	F-0345-11	F-0345-12	F-0345-13	F-0345-14	F-0345-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
Tetrachloroethene	1800	27	11	ND	10	8	$\mu g/m3$
Toluene	ND	8	ND	ND	ND	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	12	ND	ND	ND	ND	8	$\mu g/m3$
Trichlorofluoromethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	9	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
m,p-Xylene	ND	33	ND	ND	ND	16	μg/m3
o-Xylene	ND	10	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	104%	102%	101%	102%	104%	60 - 140	
Toluene-d ₈	101%	101%	108%	102%	100%	60 - 140	
4-Bromofluorobenzene	85%	83%	88%	86%	84%	60 - 140	
	F1-103119-	F1-103119-	F1-103119-	F1-103119-	F1-103119-		
Batch ID:	01	01	01	01	01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave Jones Ref. No.: F-0345 **Client Address:**

> Monrovia, CA 91016 **Client Ref. No.:** 18-41-296-02

Michael Van Fleet **Date Sampled:** 10/31/2019 Attn:

> **Date Received:** 10/31/2019 10/31/2019

Project: BCHD Date Analyzed: Project Address: 520 North Prospect Avenue Soil Gas

Physical State:

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC-8-15' Sample ID: BC-8-5'

Jones ID:	F-0345-16	F-0345-17	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	24	23	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC-8-5'	BC-8-15'
------------	---------	----------

Jones ID:	F-0345-16	F-0345-17	Reporting Limit	<u>Units</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	76	8	$\mu g/m3$
Methylene chloride	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	16	$\mu g/m3$
Tetrachloroethene	207	211	8	$\mu g/m3$
Toluene	ND	ND	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	8	$\mu g/m3$
Trichloroethene	ND	ND	8	$\mu g/m3$
Trichlorofluoromethane	ND	ND	16	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	8	$\mu g/m3$
1,2,4-Trimethylbenzene	ND	10	8	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	8	$\mu g/m3$
Vinyl chloride	ND	ND	8	$\mu g/m3$
m,p-Xylene	ND	ND	16	$\mu g/m3$
o-Xylene	ND	ND	8	$\mu g/m3$
MTBE	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	400	$\mu g/m3$
Gasoline Range Organics (C4-C12)	ND	ND	2000	$\mu g/m3$
Tracer:				
n-Pentane	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	80	μg/m3
Dilution Factor	1	1		
Surrogate Recoveries:			QC Limits	<u>š</u>
Dibromofluoromethane	104%	103%	60 - 140	
Toluene-d ₈	100%	101%	60 - 140	
4-Bromofluorobenzene	80%	90%	60 - 140	
Ratch ID:	F1-103119-	F1-103119-		
Batch ID:	01	01		

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019

Project Address: 520 North Prospect Avenue Physical State: Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	103119- F1MB1	103119- F1SB1	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK	
Jones ID:	103119- F1MB1	103119- F1SB1	Reporting Limit Units
Analytes:			
cis-1,3-Dichloropropene	ND	ND	8 μg/m ³
trans-1,3-Dichloropropene	ND	ND	8 μg/m ³
Ethylbenzene	ND	ND	8 μg/m3
Freon 113	ND	ND	$16 \mu g/m^3$
Hexachlorobutadiene	ND	ND	24 μg/m ³
Isopropylbenzene	ND	ND	8 μg/m3
4-Isopropyltoluene	ND	ND	8 μg/m3
Methylene chloride	ND	ND	8 $\mu g/m^3$
Naphthalene	ND	ND	$40 \mu g/m^3$
n-Propylbenzene	ND	ND	8 $\mu g/m^3$
Styrene	ND	ND	8 $\mu g/m^3$
1,1,1,2-Tetrachloroethane	ND	ND	8 μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	$16 \mu g/m^3$
Tetrachloroethene	ND	ND	8 $\mu g/m^3$
Toluene	ND	ND	8 μg/m3
1,2,3-Trichlorobenzene	ND	ND	$16 \mu g/m^3$
1,2,4-Trichlorobenzene	ND	ND	$16 \mu g/m^3$
1,1,1-Trichloroethane	ND	ND	8 μg/m3
1,1,2-Trichloroethane	ND	ND	8 μg/m3
Trichloroethene	ND	ND	8 μg/m3
Trichlorofluoromethane	ND	ND	$16 \mu g/m^3$
1,2,3-Trichloropropane	ND	ND	8 μg/m3
1,2,4-Trimethylbenzene	ND	ND	8 μg/m3
1,3,5-Trimethylbenzene	ND	ND	8 μg/m3
Vinyl chloride	ND	ND	8 μg/m3
m,p-Xylene	ND	ND	16 μg/m3
o-Xylene	ND	ND	8 μg/m3
MTBE	ND	ND	$40 \mu g/m^3$
Ethyl-tert-butylether	ND	ND	$40 \mu g/m^3$
Di-isopropylether	ND	ND	$40 \mu g/m^3$
tert-amylmethylether	ND	ND	$40 \mu g/m^3$
tert-Butylalcohol	ND	ND	400 μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	2000 μg/m ³
Tracer:			
n-Pentane	ND	ND	80 μg/m ³
n-Hexane	ND	ND	80 μg/m ³
n-Heptane	ND	ND	80 μg/m3
Dilution Factor	1	1	
Surrogate Recoveries:			OC Limits
Dibromofluoromethane	102%	102%	60 - 140
Toluene-d ₈	99%	101%	60 - 140
4-Bromofluorobenzene	85%	92%	60 - 140
Datah ID.	F1-103119-	F1-103119-	
Batch ID:	01	01	

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave Jones Ref. No.: F-0345

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019

Project:BCHDDate Analyzed: 10/31/2019Project Address:520 North Prospect AvenuePhysical State: Soil Gas

Redondo Beach, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Batch ID: F1-103119-01

Jones ID:	103119-F1LCS1 103119-F1LCSD1			10	V1	
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	CCV	Range (%)
Vinyl chloride	92%	91%	0.9%	60 - 140	96%	80 - 120
1,1-Dichloroethene	102%	97%	4.4%	60 - 140	98%	80 - 120
Cis-1,2-Dichloroethene	107%	114%	5.8%	70 - 130	104%	80 - 120
1,1,1-Trichloroethane	101%	102%	1.6%	70 - 130	99%	80 - 120
Benzene	114%	118%	3.8%	70 - 130	106%	80 - 120
Trichloroethene	110%	112%	1.8%	70 - 130	104%	80 - 120
Toluene	125%	127%	1.6%	70 - 130	110%	80 - 120
Tetrachloroethene	132%	129%	2.5%	70 - 130	119%	80 - 120
Chlorobenzene	114%	113%	0.4%	70 - 130	107%	80 - 120
Ethylbenzene	107%	102%	4.2%	70 - 130	104%	80 - 120
1,2,4 Trimethylbenzene	94%	87%	7.1%	70 - 130	97%	80 - 120
Gasoline Range Organics (C4-C12)	110%	109%	1.0%	70 - 130	104%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	101%	102%		60 - 140	100%	60 - 140
Toluene-d ₈	99%	100%		60 - 140	98%	60 - 140
4-Bromofluorobenzene	94%	92%		60 - 140	100%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Converse						10/31/2019	19	n 1P	Purge Number:	10F	Ü	EDD.	Report Options EDD Surcharge	Option	s	Jones Project #
Project Name						Client Project #)			ŗ		0	a ye	E 0245
BCHD Project Address						18-41-296-02	-02	Shu	Shut-In Test: () / N	Z		°G	*Global ID			F-0343
520 North Prospect Avenue	enue					Turn Around Requested	quested		Tracer		Anal	Analysis Requested	eque	sted		Page
Redondo Beach, CA						□ Immediate Attention □ Rush 24 Hours	tion		ntane							1 of 2
Email						Rush 72 Hours		□ Isopropyl A	□ Isopropyl Alchohol	M)		s		H₂O)		Sample Container:
Phone						χο Mobile Lab	a Limits			lateriai (I	s)	Organio		ım (In/	ners	GASTIGHT GLASS SYRINGE If different than above, see Notes.
Report To		Sampler					□ Low Level*	MD	L* Units		VOC	nge		/acu	onta	
Michael Van Fleet		Jackson	on Nestor	tor		100	*surcharge for these limits	these lim	s /4/m3		80B (Rar		elic \	of C	
Sample ID	Purge Number	Purge Volume (mL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnehelic	Sample Soil Gas (S	EPA 826	Gasoline		Magneh	Number	Notes & Special Instructions
BC-11-5'	ω	1980	10/31/19	7:34	7:35	F-0345-01	200	JACKSON.1	M100.102	SG	×	×		۵	-	15 of
BC-11-15'	ω	2150	10/31/19	7:47	7:51	F-0345-02	200	CASEY.	1 118012	SG	×	×		۵	-	Page
BC-12-5'	з	1980	10/31/19	8:04	8:08	F-0345-03	200	JACKSON,1	118009	SG	×	×		۵	_	
BC-12-5' REP	ω	2150	10/31/19	8:24	8:25	F-0345-04	200	JACKSON.1	118009	SG	×	×		۵		
BC-12-15'	ω	1,980	10/31/19	9:01	9:03	F-0345-05	200	CASEY.	1 M100.102	SG	×	×		۵	-	
BC-13-5'	ω	1,980	10/31/19	8:40	8:42	F-0345-06	200	JACKSON.1	118012	SG	×	×		۵	-	
BC-13-15'	ω	2,150	10/31/19	9:16	9:20	F-0345-07	200	CASEY.	1 118009	SG	×	×		۵	-	
BC-14-5'	ω	1980	10/31/19	9:34	9:36	F-0345-08	200	JACKSON.1	118012	SG	×	×		۵	->	
BC-14-15'	ω	2150	10/31/19	9:50	9:53	F-0345-09	200	CASEY.	1 M100.102	SG	×	×		۵	-	
BC-15-5'	ω	1980	10/31/19	10:08	10:10	F-0345-10	200	JACKSON.1	118009	SG	×	×		۵	-	
Represeptative Signature	1	Printed-Name	o Mas	(1)61	7000	Laboratory Signature			Prin	Printed Name Jackson Nestor	stor	+			10	Total Number of Containers
Company		Date 10/3	10/31/2019	Time	1	Company JONES ENVIRONMENTAL, INC	L. INC.		Date	10/31/2019	19	1305	2			
Representative Signature		Printed Name	ime			Laboratory Signature			Prin	Printed Name	9		ľ		ackn	acknowledgement that the above analyses have been reqested, and the information provided herein is correct
Company		Date		Time		Company			Data	-	-	Time	-			and accurate.

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Phone Report To Michael Van Fleet Sample ID BC-15-15' BC-10-5' BC-9-5' BC-9-5' BC-8-15' BC-8-15' Complainy Complainy Complainy Representative Signature	Sam Purge Purge Vol 3 22 3 22 3 28 Print Print Print	Sampler Jackson I Purge Volume (mL) 2150 10/3 2810 10/3 2980 10/3 1980 10/3 1980 10/3 2150 10/3 2150 10/3 1980 10/3 1980 10/3 1980 10/3 1980 10/3 1980 10/3 1980 10/3	Date 0/31/19 0/31/19 0/31/19 0/31/19 0/31/19 0/31/19 0/31/19	Sample Collection Time 11:26 11:36 11:36 12:34 12:34	Sample Analysis Time 10:27 11:08 11:23 12:22 12:37	Rush 46 Hours Normal Nor	rs Low Level* *surcharge for Purge Rate (mL/min) 200 200 200 200 200 200 200	0 5 0 5 0 5 0 7 3	Units Units Units 11801 11800 11800 11800 11800 11801	Printed Name Printed Name Print	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X Gasoline Range Organics		A A A A A Magnehelic Vacuum (In/H ₂ O)	Sample Container: GASTIGHT GLASS SYRINGE H different than above, see Notes. Notes & Special Instructions 10 11 11 11 11 11 11 11 11 11 11 11 11
Redondo Beach, CA						Rush 24 Hours		n-hexane	ane						
						□ Normal		□ 1,1-DI	FA	(M)		ics		1/H ₂ C	
Phone						n Mobile Lab	g Limits			Material	Cs)	Organi		(17)	iners
Report To	S	ampler					Low Level				(VO	nge	To a	_	onta
Michael Van Fleet	ے	ackso	n Nes	tor			surcharge fo	the			30B (e Ran		-	or Co
Sample ID		Purge	Date	Sample Collection	Sample Analysis	Laboratory Sample ID	Purge Rate (mL/min)				PA 826	Sasoline		-100	umber
סי יני יני	-	7	12/2/1/20	2	10.07	7 0047	200				< E	< (+	-
BC-15-15'	Ske	2150	10/31/19	10:24	10:27	F-0345-11	200			SG	×	×	_		-
3C-10-5'		2810	10/31/19	11:05	11:08	F-0345-12	200	JACKSON.		SG	×	×	A		-
3C-10-15'		2980	10/31/19	11:20	11:23	F-0345-13	200	CASEY.		SG	×	×	_		_
3C-9-5'		1980	10/31/19	11:36	11:40	F-0345-14	200	JACKSON.		SG	×	×			-
3C-9-15'		2150	10/31/19	11:58	12:02	F-0345-15	200	CASEY.		SG	×	×			-
3C-8-5'		1980	10/31/19	12:20	12:22	F-0345-16	200	JACKSON.		SG	×	×	•		-
3C-8-15'			10/31/19	12:34	12:37	F-0345-17	200			SG	×	×	_		-
												-		+	
						,						\dashv		-	-
tepresentative Signature	P	Inted Nam	MM	1	2	Laboratory Signature	L		Prin Jack	son Nes	tor				
1	Da	10	2019	Time	1	Company JONES ENVIRONMENTA	L, INC.		Date	0/31/20	19	Time	2		
tepresentative Signature	Pr	inted Nam	6	4		Laboratory Signature			Prin	ted Nan	9				ackno
				-							-	Timo		1	The state of

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Report date: 11/1/2019
Client Address: 717 S. Myrtle Ave Jones Ref. No.: G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

 Project:
 BCHD

 Date Received:
 10/31/2019

 Date Analyzed:
 10/31/2019

Project Address: 520 North Prospect Ave Physical State: Soil Gas

Redondo Beach, California

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWOCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Annalise O'Toole

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

BC1-20'

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID:	BC1-20'	BC1-20' REP	BC1-30'	BC2-5'	BC2-15'		
Jones ID:	G-0037-01	G-0037-02	G-0037-03	G-0037-04	G-0037-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	68	66	81	ND	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	μg/m3

Sample III)		EPA 82	60B – Volati	le Organics k	by GC/MS +	Oxygenates		
Care	Sample ID:	BC1-20'		BC1-30'	BC2-5'	BC2-15'		
cis-13-Dichloropropene ND ND<	Jones ID:	G-0037-01	G-0037-02	G-0037-03	G-0037-04	G-0037-05	Reporting Limit	<u>Units</u>
trans-1,3-Dichloropropene ND	Analytes:							
Ethylbenzene	cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freeholtonobladiene	trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Hexachlorobutadiene	Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Isopropylenzene	Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
A-Isopropylotlucne	Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Methylene chloride ND ND ND ND ND ND ND ND ND 40 µg/m3 Naphthalene ND ND ND ND ND ND 40 µg/m3 n-Propylbenzene ND ND ND ND ND ND 8 µg/m3 Styrene ND ND ND ND ND ND ND 8 µg/m3 1,1,2-2-Tetrachlorocthane ND 16 µg/m3 1,1,2-Tetrachlorocthane ND	Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
No. No.	Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene ND ND ND ND ND ND ND N	Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
1,1,2-Tetrachloroethane	n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	Styrene	ND	ND	ND	9	ND	8	μg/m3
Tetrachloroethene	1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
Tetrachloroethene	1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	
Toluene	Tetrachloroethene	912	925	932	46	19	8	
1,2,3-Trichlorobenzene	Toluene	ND	ND	ND	ND	ND	8	
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	16	
1,1,2-Trichloroethane	* *			ND	ND	ND	8	
Trichloroethene ND ND ND ND ND ND ND N	· ·							
Trichlorofluoromethane	· ·							
1,2,3-Trichloropropane								
1,2,4-Trimethylbenzene								
ND ND ND ND ND ND ND ND								
Vinyl chloride ND ND ND ND ND ND ND N	•							
M.	•							
o-Xylene ND ND ND ND ND ND 8 μg/m3 MTBE ND ND ND ND ND 40 μg/m3 Ethyl-tert-butylether ND ND ND ND ND 40 μg/m3 Di-isopropylether ND ND ND ND ND 40 μg/m3 tert-amylmethylether ND ND ND ND ND ND 40 μg/m3 tert-Butylalcohol ND ND ND ND ND ND ND 400 μg/m3 ret-Butylalcohol ND ND ND ND ND ND ND 400 μg/m3 Tracer: n-Pentane ND ND ND ND ND 80 μg/m3 n-Hexane ND								
MTBE ND ND ND ND ND 40 μg/m3 Ethyl-tert-butylether ND ND ND ND ND 40 μg/m3 Di-isopropylether ND ND ND ND ND 40 μg/m3 tert-amylmethylether ND ND ND ND ND 40 μg/m3 tert-Butylalcohol ND ND ND ND ND ND 40 μg/m3 retreButylalcohol ND ND ND ND ND ND 40 μg/m3 Tracer: n-Pentane ND ND ND ND ND 80 μg/m3 n-Hexane ND ND ND ND ND ND 80 μg/m3 n-Heptane ND ND ND ND ND ND ND ND 80 μg/m3 Dilution Factor 1 1 1 1								
Di-isopropylether ND ND ND ND ND A0 µg/m3								
Di-isopropylether ND ND ND ND ND A0 μg/m3								
tert-amylmethylether tert-Butylalcohol ND ND ND ND ND 40 μg/m3 tert-Butylalcohol Tracer: n-Pentane ND ND ND ND ND ND ND ND ND MD MD ND ND<	2							
Tracer: n-Pentane ND ND ND ND 400 μg/m3 n-Pentane ND ND ND ND ND ND ND ND MD ND SE SE	* **							
Tracer: n-Pentane ND ND ND ND ND ND ND ND μg/m3 n-Hexane ND See NO 88 88								
n-Pentane ND ND ND ND ND ND μg/m3 n-Hexane ND ND ND ND ND ND ND ND ND 80 μg/m3 n-Heptane ND ND ND ND ND ND ND 80 μg/m3 Dilution Factor 1	tert-Butylareonor	ND	ND	ND	ND	ND	400	μд/1113
ND ND ND ND ND ND ND ND	Tracer:							
n-Heptane ND ND ND ND ND 80 μg/m3 Dilution Factor 1 1 1 1 1 1 Surrogate Recoveries: Dibromofluoromethane 88% 86% 88% 85% 85% 60 - 140 Toluene-ds 88% 88% 87% 88% 60 - 140 4-Bromofluorobenzene 107% 109% 106% 109% 108% 60 - 140 Rotch ID: G1-103119- G1-103119- G1-103119- G1-103119- G1-103119- G1-103119-	n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor 1	n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Surrogate Recoveries: OC Limits Dibromofluoromethane 88% 86% 88% 85% 60 - 140 Toluene-ds 88% 88% 87% 88% 87% 60 - 140 4-Bromofluorobenzene 107% 109% 106% 109% 108% 60 - 140 Botch ID: G1-103119- G1-103119- G1-103119- G1-103119- G1-103119-	n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dibromofluoromethane 88% 86% 88% 85% 85% 60 - 140 Toluene-ds 88% 88% 87% 88% 87% 60 - 140 4-Bromofluorobenzene 107% 109% 106% 109% 108% 60 - 140 Botch ID:	Dilution Factor	1	1	1	1	1		
Dibromofluoromethane 88% 86% 88% 85% 85% 60 - 140 Toluene-ds 88% 88% 87% 88% 87% 60 - 140 4-Bromofluorobenzene 107% 109% 106% 109% 108% 60 - 140 Botch ID:	Surrogate Recoveries:						QC Limit	t <u>s</u>
Toluene-ds 88% 88% 87% 88% 87% 60 - 140 4-Bromofluorobenzene 107% 109% 106% 109% 108% 60 - 140 G1-103119- G1-103119- G1-103119- G1-103119- G1-103119-		88%	86%	88%	85%	85%		
4-Bromofluorobenzene 107% 109% 106% 109% 108% 60 - 140 Rotch ID: G1-103119- G1-103119- G1-103119- G1-103119-								
Ratch III:								
Ratch III:		G1-103119-	G1-103119-	G1-103119-	G1-103119-	G1-103119-		
	Batch ID:							

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	BC3-5'	BC3-15'	BC4-5'	BC4-15'	BC5-5'		
Jones ID:	G-0037-06	G-0037-07	G-0037-08	G-0037-09	G-0037-10	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	8	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	17	16	30	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	27	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	μg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	BC3-5'	BC3-15'	BC4-5'	BC4-15'	BC5-5'		
Jones ID:	G-0037-06	G-0037-07	G-0037-08	G-0037-09	G-0037-10	Reporting Limit	Units
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	ND	ND	22	ND	ND	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	10	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	12	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
Tetrachloroethene	10	14	38	106	162	8	μg/m3
Toluene	ND	ND	45	ND	ND	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichlorofluoromethane	10	12	ND	ND	ND	16	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2,4-Trimethylbenzene	19	16	64	15	19	8	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	25	ND	ND	8	$\mu g/m3$
Vinyl chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
m,p-Xylene	23	ND	76	ND	13	16	$\mu g/m3$
o-Xylene	13	ND	32	ND	9	8	$\mu g/m3$
MTBE	ND	ND	ND	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	ND	ND	ND	400	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	
Dibromofluoromethane	90%	78%	85%	89%	87%	60 - 140	
Toluene-d ₈	87%	88%	90%	87%	89%	60 - 140	
4-Bromofluorobenzene	109%	107%	109%	110%	107%	60 - 140	
Datah IDa	G1-103119-	G1-103119-	G1-103119-	G1-103119-	G1-103119-		
Batch ID:	01	01	01	01	01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

BC7-15'

BC7-5'

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

BC6-5'

BC5-15'

Sample ID:

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

BC6-15'

BC2-15	BC0-5	BC0-15	BC/-15	BC/-5		
G-0037-11	G-0037-12	G-0037-13	G-0037-14	G-0037-15	Reporting Limit	<u>Units</u>
ND	ND	22	ND	8	8	μg/m3
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND		$\mu g/m3$
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND		μg/m3
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND	12	μg/m3
ND	ND	ND	ND	ND		$\mu g/m3$
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	16	μg/m3
ND	ND	ND	ND	ND	16	μg/m3
ND	ND	ND	ND	ND	16	μg/m3
47	41	114	21	86	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	$\mu g/m3$
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	8	μg/m3
ND	ND	ND	ND	ND	16	μg/m3
ND	ND	ND	ND	ND	10	$\mu g/m3$
	ND N	G-0037-11 G-0037-12 ND	G-0037-11 G-0037-12 G-0037-13 ND ND ND ND ND	G-0037-11 G-0037-12 G-0037-13 G-0037-14 ND ND 22 ND ND ND ND ND ND	G-0037-11 G-0037-12 G-0037-13 G-0037-14 G-0037-15 ND ND ND ND ND ND ND ND ND ND </td <td>G-0037-11 G-0037-12 G-0037-13 G-0037-14 G-0037-15 Reporting Limit ND ND 22 ND 8 8 ND ND ND ND 12 ND ND ND ND 8 ND ND ND ND 12 ND ND ND ND 12 ND ND <td< td=""></td<></td>	G-0037-11 G-0037-12 G-0037-13 G-0037-14 G-0037-15 Reporting Limit ND ND 22 ND 8 8 ND ND ND ND 12 ND ND ND ND 8 ND ND ND ND 12 ND ND ND ND 12 ND ND <td< td=""></td<>

	EPA 82	60B – Volati	le Organics l	by GC/MS +	Oxygenates		
Sample ID:	BC5-15'	BC6-5'	BC6-15'	BC7-15'	BC7-5'		
Jones ID:	G-0037-11	G-0037-12	G-0037-13	G-0037-14	G-0037-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	22	ND	26	ND	21	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	9	ND	11	ND	11	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	370	651	841	336	1300	8	μg/m3
Toluene	18	ND	76	ND	54	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	10	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	24	18	36	8	24	8	μg/m3
1,3,5-Trimethylbenzene	8	ND	15	ND	8	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	105	14	95	ND	77	16	μg/m3
o-Xylene	45	9	35	ND	31	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limi</u>	
Dibromofluoromethane	87%	84%	86%	85%	87%	60 - 140)
Toluene-d ₈	86%	87%	86%	87%	87%	60 - 140)
4-Bromofluorobenzene	108%	110%	111%	108%	109%	60 - 140)

ND = Value below reporting limit

01

01

Batch ID:

01

01

G1-103119- G1-103119- G1-103119- G1-103119-

01

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:ConverseReport date:11/1/2019Client Address:717 S. Myrtle AveJones Ref. No.:G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019 **Date Analyzed:** 10/31/2019

Project:BCHDDate Analyzed:10/31/2019Project Address:520 North Prospect AvePhysical State:Soil Gas

Redondo Beach, California

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	103119- G1MB1	103119- G1SB1	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	μg/m3
Bromobenzene	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	8	μg/m3
Bromoform	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B -	Volatile	Organics	by GC/MS	+ Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK	
Jones ID:	103119- G1MB1	103119- G1SB1	Reporting Limit Units
Analytes:			
cis-1,3-Dichloropropene	ND	ND	8 $\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	8 $\mu g/m3$
Ethylbenzene	ND	ND	8 $\mu g/m3$
Freon 113	ND	ND	$16 \mu g/m3$
Hexachlorobutadiene	ND	ND	$\mu g/m3$
Isopropylbenzene	ND	ND	8 $\mu g/m3$
4-Isopropyltoluene	ND	ND	8 $\mu g/m3$
Methylene chloride	ND	ND	8 $\mu g/m3$
Naphthalene	ND	ND	$40 \mu g/m3$
n-Propylbenzene	ND	ND	8 $\mu g/m3$
Styrene	ND	ND	8 $\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	8 $\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	$16 \mu g/m3$
Tetrachloroethene	ND	ND	8 $\mu g/m3$
Toluene	ND	ND	8 $\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	$16 \mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	$16 \mu g/m3$
1,1,1-Trichloroethane	ND	ND	8 $\mu g/m3$
1,1,2-Trichloroethane	ND	ND	8 $\mu g/m3$
Trichloroethene	ND	ND	8 $\mu g/m3$
Trichlorofluoromethane	ND	ND	$16 \mu g/m3$
1,2,3-Trichloropropane	ND	ND	8 $\mu g/m3$
1,2,4-Trimethylbenzene	ND	ND	8 $\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	8 $\mu g/m3$
Vinyl chloride	ND	ND	8 $\mu g/m3$
m,p-Xylene	ND	ND	$16 \mu g/m3$
o-Xylene	ND	ND	8 $\mu g/m3$
MTBE	ND	ND	$40 \mu g/m3$
Ethyl-tert-butylether	ND	ND	$40 \mu g/m3$
Di-isopropylether	ND	ND	$40 \mu g/m3$
tert-amylmethylether	ND	ND	$40 \mu g/m3$
tert-Butylalcohol	ND	ND	400 μg/m3
Tracer:			
n-Pentane	ND	ND	80 μ g/m3
n-Hexane	ND	ND	80 $\mu g/m3$
n-Heptane	ND	ND	80 μg/m3
Dilution Factor	1	1	
Surrogate Recoveries:			OC Limits
Dibromofluoromethane	85%	87%	60 - 140
Toluene-d ₈	93%	90%	60 - 140
4-Bromofluorobenzene	101%	109%	60 - 140
Dodok ID.	G1-103119-	G1-103119-	
Batch ID:	01	01	

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave Jones Ref. No.: G-0037

Monrovia, California 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/31/2019

Date Received: 10/31/2019
BCHD Date Analyzed: 10/31/2019

Project: BCHD Date Analyzed: 10/31/2019
Project Address: 520 North Prospect Ave Physical State: Soil Gas

Redondo Beach, California

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Batch ID: G1-103119-01

Jones ID:	103119-G1LCS1	103119-G1LCSD1			103119	-G1CCV1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	69%	72%	3.8%	60 - 140	95%	80 - 120
1,1-Dichloroethene	103%	99%	4.5%	60 - 140	101%	80 - 120
Cis-1,2-Dichloroethene	129%	129%	0.3%	70 - 130	117%	80 - 120
1,1,1-Trichloroethane	128%	129%	0.3%	70 - 130	108%	80 - 120
Benzene	134%	122%	8.8%	70 - 130	107%	80 - 120
Trichloroethene	123%	125%	1.8%	70 - 130	95%	80 - 120
Toluene	107%	95%	11.2%	70 - 130	87%	80 - 120
Tetrachloroethene	127%	113%	12.1%	70 - 130	111%	80 - 120
Chlorobenzene	118%	120%	1.9%	70 - 130	109%	80 - 120
Ethylbenzene	113%	111%	2.1%	70 - 130	93%	80 - 120
1,2,4 Trimethylbenzene	122%	99%	20.6%1	70 - 130	93%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	98%	97%		60 - 140	82%	60 - 140
Toluene-d ₈	86%	81%		60 - 140	90%	60 - 140
4-Bromofluorobenzene	105%	101%		60 - 140	114%	60 - 140

¹=RPD outside of acceptable limits. CCV and LCS/LCSD recoveries were within QC limits, therefore data was accepted.

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

11007 Forest Pl.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.jonesenv.com

Soil-Gas Chain-of-Custody Record

STAN CHANNEL GRAD				Time		0	Date			Company	0	Time			Date		Aupany
acknowledgement that the above analyses have been requested, and the information provided herein is correct	cknowledg gested, and	i e			ne	Printed Name	Prir			Laboratory Signature	-		0 0 0 0 1 1	Printed Name	Prin	osignature	Alleminacondo
Client signature on this Chain of Custody form constitutes	ent signatur	Ω Ω I	00	13-00	919	10/31/2019	Date 1		AL INC.	-	- 0	Time		10/31/2019	Date	BANC &	onverse OMUC
Total Number of Containers		10			me	Printed Name Joel Almas	Prir	P	and a	y Signature			f i i i i i i i i i i i i i i i i i i i	Spencer Wagner	Spe	esignature	omedic extramesarda
		2 1	^2		×	SG	118001	JOEL.1	200	G-0037-10	10:50	10:48	10/31/19	1630 10	ω		3C5-5'
		2 1	<2		×	SG	M100.155	JOEL.1	200	G-0037-09	10:32	10:27	10/31/19	1,790 10	ω		3C4-15'
		2 1	<2		×	SG	118001	JOEL.1	200	G-0037-08	10:15	10:06	10/31/19	1630 10	ω		3C4-5'
		2 1	<2		×	SG	M100.155	JOEL 1	200	G-0037-07	09:59	9:50	10/31/19	1,790 10	ω		3C3-15'
		2	<2		×	SG	118001	JOEL.1	200	G-0037-06	09:34	9:30	10/31/19	1630	ω		BC3-5'
		2	^2		×	SG	M100.155	JOEL.1	200	G-0037-05	09:18	09:15	10/31/19	1,790 10	ω		BC2-15'
		2	<2		×	SG	118001	JOEL.1	200	G-0037-04	09:00	08:57	10/31/19	1630	ω		BC2-5'
		2	2		×	SG	M100.155	ANGELA 1	200	G-0037-03	08:35	08:28	10/31/19	2040 11	ω		BC1-30'
11 (2 1	<2		×	SG	118001	JOEL.1	200	G-0037-02	08:18	08:13	10/31/19	1880 1	ω	REP	BC1-20' REP
of 12		2	2		×	SG	118001	JOEL.1	200	G-0037-01	08:01	07:56	10/31/19	1880	ω		BC1-20'
Notes & Special Instructions	1500		Magneh	Gasolini	EPA 826	Sample Soil Gas (S	Magnehelic	Pump Used	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge Number	Sample ID N	
		of Conta	elic Vacu	e Range	60B (VO	Matrix: G), Air (A),	Units 3	these limits	□ Low Level* □ MDL* *surcharge for these limits	Standard			าลร	Sampler Joel Almas	Sa	Michael Van Fleet	Michae
GASTIGHT GLASS SYRINGE If different than above, see Notes.			um (In/l	Organic	Cs)	Material (M	3	D I, I-DIA	Lab Reporting Limits	Mobile Lab						1-9320	Phone 626-524-9320
Sample Container:		120)	H ₂ O)	s		M)	Isopropyl Alchohol	sopropyl /		Rush 72 Hours							Email
1 of 2							lane	n-pentane	ntion	□ Rush 24 Hours					_	Redondo Beach, California	Redon
Page		ed	Analysis Requested	lysis R	Ana		Tracer	,	equested	Turn Around Requested						520 North Prospect Ave	520 No
G-0037			*Global ID	·0		\bigcirc	Shut-In Test: (Shu	6-02	Client Project # 18-41-296-02						me	BCHD
Jones Project #	Ď.	tions	Report Options EDD	EDD R	U	97. 10F	Purge Number:	o 1P)19	Date 10/31/2019						'Se	Converse

11007 Forest Pl.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.jonesenv.com

Soil-Gas Chain-of-Custody Record

				Time			Date			Company		Time		Date	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ompany
acknowledgement that the above analyses have been regested, and the information provided herein is correct and accurate.	acknow		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Printed Name	Printe			Laboratory Signature			ne	Printed Name		epresentative Signature
Client signature on this Chain of Custody form constitutes	Client sig		800	12000	9	10/31/2019	10		T, INC.	JONES ENVIRONMENTAL, INC		0:00	10/31/2019	Date 10/31		on desse
Total Number of Containers	5 Tota		1	Time		umas	Joel Almas		ul C	Laboratory Signatur				Spencer Wagner	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					_	Printed Name	Printe	_								epresentative Signature
	-															
	-	2			×	SG	M100.155	JOEL.1 M	200	G-0037-15	12:18	12:18	10/31/19	1630	ω	3C7-5
		2			×	SG	M100.155	JOEL 1 M	200	G-0037-14	11:59	11:59	10/31/19	1,790	u	3C7-15'
		00			×	SG	M100.155	JOEL.1 M	200	G-0037-13	11:42	11:41	10/31/19	1,790	ı	BC6-15'
12 0	-	2			×	SG	M100.155	JOEL.1 M	200 .	G-0037-12	11:24	11:23	10/31/19	1630	ω	BC6-5'
f 12		2			×	SG	M100.155	JOEL.1 M	200	G-0037-11	11:08	11:00	10/31/19	1,790	ω	BC5-15'
Notes & Special Instructions	Numbe	-		Cusoiii	EPA 82	Soil Gas (Maghehelic Sample	Pump Used Mi	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge	Sample ID
	er of Con	helic Va			e Rang	SG), Air (A	Matrix Matrix	ese limits	□ Low Level* □ MDL* *surcharge for these limits	Standard L			mas	Joel Almas		Michael Van Fleet
If different than above, see Notes.	itainers			3-), Material				Mobile Lab Reporting Limits						626-524-9320
GASTIGHT GLASS SYRINGE					nics	(M)	Ichohol	□ Isopropyl Alchohol □ 1,1-DFA		Rush 72 Hours						
2 of 2								n-hentane	on	Rush 24 Hours					nia	Redondo Beach, California
Page	-	ted	ques	Analysis Requested	nalys	Ar	-	Tracer	uested	Turn Around Requested						520 North Prospect Ave
G-0037			al ID	*Global ID		Z	est (Ý)	Shut-In Test	02	18-41-296-02						BCHD Project Address
Jones Project #	irge_	Surcha	EDF* - 10% Surcharge	EDF.		10P	63P 07P 010P	□ 1P 6 3P	9	10/31/2019						Converse Project Name
LAB USE ONLY		otions	Report Options	Re			Purge Number:	Pußge		Date	0					Client
																- Contraction

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants **Client: Client Address:**

717 S. Myrtle Ave

Monrovia, CA 91016

Attn: Mike Van Fleet

BCHD Project:

Project Address: 520 N. Prospect Ave

Redondo Beach, CA

Report date: 11/1/2019 Jones Ref. No.: ST-14526

Client Ref. No.: 18-41-296-02

Date Sampled: 10/23/2019

Date Received: 10/24/2019 10/28-29/19 **Date Analyzed:**

Physical State: Soil

ANALYSES REQUESTED

Soil:

- 1. EPA 8015M – Extended Range Hydrocarbons
- EPA 8260B by 5035 Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics 2.
- 3. EPA 6010B by 3050B and EPA 7471A – CAM 17 Metals
- 4. EPA 8081A by 3546 – Chlorinated Pesticides by GC/ECD
- 5. EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Approval:

David Mirakian, M.S. Stationary Lab Chemist

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

	E	PA 8015M - 1	Extended Ra	nge Hydroca	rbons		
Sample ID:	BC1-2	BC1-30	BC2-2	BC2-5	BC3-2		
Jones ID:	ST-14526-01	ST-14526-05	ST-14526-06	ST-14526-07	ST-14526-10	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery: Hexacosane	56%	44%	69%	69%	49%	<u>OC Limit</u> 30 - 120	<u>s</u>
Batch:	8015 _102519_01	8015 _102519_01	8015 _102519_01	8015 _102519_01	8015 _102519_01		

ND = Value less than reporting limit

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC3-5	BC4-2	BC4-5	BC5-2	BC5-5		
Jones ID:	ST-14526-11	ST-14526-14	ST-14526-15	ST-14526-18	ST-14526-19	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	<u>s</u>
Hexacosane	59%	74%	85%	66%	54%	30 - 120	
Batch:	8015	8015	8015	8015	8015		
Dattii.	_102519_01	_102519_01	_102519_01	_102519_01	_102519_01		

ND = Value less than reporting limit

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC6-2	BC6-5	BC7-2	BC7-5	BC8-2		
Jones ID:	ST-14526-22	ST-14526-23	ST-14526-26	ST-14526-27	ST-14526-30	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	<u>:s</u>
Hexacosane	67%	85%	57%	74%	60%	30 - 120	
Batch:	8015	8015	8015	8015	8015		
	_102519_01	_102519_01	_102519_01	_102519_01	_102519_01		

ND = Value less than reporting limit

Redondo Beach, CA

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

 Project:
 BCHD
 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	D: BC8-5 BC9-2		BC9-5 BC10-2 BC10-5				
Jones ID:	ST-14526-31	ST-14526-34	ST-14526-35	ST-14526-38	ST-14526-39	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limit	<u>s</u>
Hexacosane	74%	65%	59%	57%	64%	30 - 120	
Dataha	8015	8015	8015	8015	8015		
Batch:	_102519_01	_102519_01	_102519_01	_102519_01	_102519_01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC11-2	BC11-5	BC12-2	BC12-5	BC13-2		
Jones ID:	ST-14526-42	ST-14526-43	ST-14526-46	ST-14526-47	ST-14526-50	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	ND	ND	1.0	mg/kg
C20 - C23	ND	ND	ND	ND	ND	1.0	mg/kg
C24 - C27	ND	ND	ND	ND	ND	1.0	mg/kg
C28 - C31	ND	ND	ND	ND	ND	1.0	mg/kg
C32 - C35	ND	ND	ND	ND	ND	1.0	mg/kg
C36 - C39	ND	ND	ND	ND	ND	1.0	mg/kg
C40 - C43	ND	ND	ND	ND	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	ND	ND	ND	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						OC Limit	
Hexacosane	42%	49%	44%	75%	56%	30 - 120	
Datah	8015	8015	8015	8015	8015		
Batch:	102519 02	102519 02	102519 02	102519 02	102519 02		

Redondo Beach, CA

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	BC13-5	BC14-2	BC14-5	BC15-2	BC15-5		
Jones ID:	ST-14526-51	ST-14526-54	ST-14526-55	ST-14526-58	ST-14526-59	Reporting Limit	<u>Units</u>
Carbon Chain Range							
C10 - C11	ND	ND	ND	ND	ND	1.0	mg/kg
C12 - C13	ND	ND	ND	ND	ND	1.0	mg/kg
C14 - C15	ND	ND	ND	ND	ND	1.0	mg/kg
C16 - C17	ND	ND	ND	ND	ND	1.0	mg/kg
C18 - C19	ND	ND	ND	1.2	ND	1.0	mg/kg
C20 - C23	ND	2.3	ND	5.7	ND	1.0	mg/kg
C24 - C27	ND	3.2	ND	10.8	ND	1.0	mg/kg
C28 - C31	ND	5.0	ND	21.9	ND	1.0	mg/kg
C32 - C35	ND	5.1	ND	30.8	ND	1.0	mg/kg
C36 - C39	ND	5.3	ND	43.6	ND	1.0	mg/kg
C40 - C43	ND	5.6	ND	50.7	ND	1.0	mg/kg
C13 - C22	ND	ND	ND	ND	ND	10.0	mg/kg
C23 - C40	ND	20.9	ND	123	ND	10.0	mg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recovery:						QC Limits	S
Hexacosane	88%	63%	81%	66%	63%	30 - 120	
Datah	8015	8015	8015	8015	8015		
Batch:	_102519_02	_102519_02	_102519_02	_102519_02	_102519_02		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526 Monrovia, CA 91016 **Client Ref. No.:** 18-41-296-02 Mike Van Fleet **Date Sampled:** 10/23/2019 Attn: **Date Received:** 10/24/2019 **Project: BCHD** 10/25-26/19 **Date Analyzed: Project Address:** 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

EPA 8015M - Extended Range Hydrocarbons

Sample ID:	METHOD BLANK	METHOD BLANK	
Jones ID:	MB- 102519_01	MB- 102519_02	Reporting Limit Units
Carbon Chain Range			
C10 - C11	ND	ND	1.0 mg/kg
C12 - C13	ND	ND	1.0 mg/kg
C14 - C15	ND	ND	1.0 mg/kg
C16 - C17	ND	ND	1.0 mg/kg
C18 - C19	ND	ND	1.0 mg/kg
C20 - C23	ND	ND	1.0 mg/kg
C24 - C27	ND	ND	1.0 mg/kg
C28 - C31	ND	ND	1.0 mg/kg
C32 - C35	ND	ND	1.0 mg/kg
C36 - C39	ND	ND	1.0 mg/kg
C40 - C43	ND	ND	1.0 mg/kg
C13 - C22	ND	ND	10.0 mg/kg
C23 - C40	ND	ND	10.0 mg/kg
<u>Dilution Factor</u>	1	1	
Surrogate Recovery: Hexacosane	53%	63%	<u>OC Limits</u> 30 - 120
Batch:	8015 _102519_01	8015 _102519_02	

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/25-26/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

BATCH: 8015_102519_01 **Prepared:** 10/24/2019 **Analyzed:** 10/25/2019

EPA 8015M - Extended Range Hydrocarbons

	Result	Spike Lev	vel % Recover	y % RPD	% Recovery Limits	Units
LCS:	LCS-102519_	01	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	407	500	81%		60 - 140	mg/kg
Surrogate Recovery: Hexacosane			59%		30 - 120	
LCSD:	LCSD-102519	9_01	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	445	500	89%	8.9%	60 - 140	mg/kg
Surrogate Recoveries: Hexacosane			69%		30 - 120	
CCV:	CCV-102519	_01				
Analyte: Diesel	1170	1000	117%		80 - 120	mg/kg

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

11/1/2019

JONES ENVIRONMENTAL **QUALITY CONTROL INFORMATION**

Client: Converse Consultants

Report date: 717 S Myrtle Ave ST-14526 **Client Address:** Jones Ref. No.:

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 **BCHD Date Analyzed:** 10/25-26/19

Project: 520 N. Prospect Ave **Project Address: Physical State:** Soil

Redondo Beach, CA

8015 _102519_02 10/25/2019 10/26/2019 **BATCH:** Prepared: Analyzed:

EPA 8015M - Extended Range Hydrocarbons

	Result	Spike Le	vel % Recover	y % RPD	% Recovery Limits	Units
LCS:	LCS-102519_	_02	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	441	500	88%		60 - 140	mg/kg
Surrogate Recovery:						
Hexacosane			75%		30 - 120	
LCSD:	LCSD-10251	9_02	SAMPLE SPIKED:	CLEAN SOIL		
Analyte:						
Diesel	421	500	84%	4.6%	60 - 140	mg/kg
Surrogate Recoveries:						
Hexacosane			94%		30 - 120	
CCV:	CCV-102519	_02				
Analyte:						
Diesel	1160	1000	116%		80 - 120	mg/kg

LCS = Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC1-2 BC1-30 BC2-2 BC2-5 BC3-2

Redondo Beach, CA

Jones ID:	ST-14526-01	ST-14526-05	ST-14526-06	ST-14526-07	ST-14526-10	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC1-2	BC1-30	BC2-2	BC2-5	BC3-2

Jones ID:	ST-14526-01	ST-14526-05	ST-14526-06	ST-14526-07	ST-14526-10	Reporting Limit	Units
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>ts</u>
Dibromofluoromethane	103%	103%	102%	105%	108%	60 - 140	
Toluene-d ₈	97%	100%	97%	103%	99%	60 - 140	
4-Bromofluorobenzene	96%	103%	98%	99%	98%	60 - 140	
	VOC3-	VOC3-	VOC3-	VOC3-	VOC3-		
	102819-01	102819-01	102819-01	102819-01	102819-01		

BC3-5

Sample ID:

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

BC5-2

BC5-5

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

BC4-5

EPA 8260B by 5035 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC4-2

ST-14526-11 ST-14526-14 ST-14526-15 ST-14526-18 ST-14526-19 Jones ID: **Reporting Limit** Units **Analytes:** 1.0 Benzene ND ND ND ND ND μg/kg 1.0 μg/kg Bromobenzene ND ND ND ND ND 1.0 Bromodichloromethane ND ND ND ND ND μg/kg Bromoform ND ND ND ND ND 1.0 μg/kg n-Butylbenzene ND ND ND ND ND 1.0 $\mu g/kg$ 1.0 μg/kg sec-Butylbenzene ND ND ND ND ND tert-Butylbenzene ND ND ND ND ND 1.0 μg/kg 1.0 μg/kg Carbon tetrachloride ND ND ND ND ND 1.0 μg/kg Chlorobenzene ND ND ND ND ND Chloroform ND ND ND ND ND 1.0 μg/kg 2-Chlorotoluene ND ND ND ND ND 1.0 $\mu g/kg$ 1.0 μg/kg 4-Chlorotoluene ND ND ND ND ND 1.0 Dibromochloromethane ND ND ND ND ND μg/kg 1.0 1,2-Dibromo-3-chloropropane ND ND ND ND ND μg/kg 1,2-Dibromoethane (EDB) ND ND ND ND ND 1.0 μg/kg Dibromomethane ND ND ND ND ND 1.0 μg/kg 1,2- Dichlorobenzene ND ND ND ND ND 1.0 $\mu g/kg$ 1.0 1,3-Dichlorobenzene ND ND ND ND ND μg/kg 1.0 1.4-Dichlorobenzene ND ND ND ND ND μg/kg 1.0 μg/kg 1,1-Dichloroethane ND ND ND ND ND 1,2-Dichloroethane ND ND ND ND ND 1.0 μg/kg 1,1-Dichloroethene ND ND ND ND ND 1.0 μg/kg cis-1,2-Dichloroethene ND ND ND ND ND 1.0 μg/kg 1.0 μg/kg trans-1,2-Dichloroethene ND ND ND ND ND 1.0 1,2-Dichloropropane ND ND ND ND ND μg/kg 1.0 1,3-Dichloropropane ND ND ND ND ND μg/kg 2,2-Dichloropropane ND ND ND ND ND 1.0 μg/kg 1,1-Dichloropropene ND ND ND ND ND 1.0 μg/kg cis-1,3-Dichloropropene ND ND ND ND ND 1.0 $\mu g/kg$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC3-5	BC4-2	BC4-5	BC5-2	BC5-5

Jones ID:	ST-14526-11	ST-14526-14	ST-14526-15	ST-14526-18	ST-14526-19	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	$\mu g/kg$
Freon 12	ND	ND	ND	ND	ND	5.0	$\mu g/kg$
Freon 113	ND	ND	ND	ND	ND	5.0	$\mu g/kg$
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>s</u>
Dibromofluoromethane	106%	105%	102%	105%	103%	60 - 140	
Toluene-d ₈	103%	101%	102%	99%	100%	60 - 140	
4-Bromofluorobenzene	97%	97%	103%	101%	101%	60 - 140	
	VOC3-	VOC3-	VOC3-	VOC3-	VOC3-		
	102819-01	102819-01	102819-01	102819-01	102819-01		
	102017 01	102017 01	102017 01	102017 01	10=017 01		

Redondo Beach, CA

BC6-5

BC6-2

Sample ID:

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

BC7-5

BC8-2

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

BC7-2

ST-14526-22 ST-14526-23 ST-14526-26 ST-14526-27 ST-14526-30 Jones ID: **Reporting Limit** Units **Analytes:** 1.0 Benzene ND ND ND ND ND μg/kg 1.0 μg/kg Bromobenzene ND ND ND ND ND

1.0 Bromodichloromethane ND ND ND ND ND μg/kg Bromoform ND ND ND ND ND 1.0 μg/kg n-Butylbenzene ND ND ND ND ND 1.0 $\mu g/kg$ 1.0 μg/kg sec-Butylbenzene ND ND ND ND ND tert-Butylbenzene ND ND ND ND ND 1.0 μg/kg 1.0 μg/kg Carbon tetrachloride ND ND ND ND ND 1.0 μg/kg Chlorobenzene ND ND ND ND ND Chloroform ND ND ND ND ND 1.0 μg/kg 2-Chlorotoluene ND ND ND ND ND 1.0 $\mu g/kg$ 1.0 μg/kg 4-Chlorotoluene ND ND ND ND ND 1.0 Dibromochloromethane ND ND ND ND ND μg/kg 1.0 1,2-Dibromo-3-chloropropane ND ND ND ND ND μg/kg 1,2-Dibromoethane (EDB) ND ND ND ND ND 1.0 μg/kg Dibromomethane ND ND ND ND ND 1.0 μg/kg 1,2- Dichlorobenzene ND ND ND ND ND 1.0 $\mu g/kg$ 1.0 1,3-Dichlorobenzene ND ND ND ND ND μg/kg 1.0 1.4-Dichlorobenzene ND ND ND ND ND μg/kg 1.0 μg/kg 1,1-Dichloroethane ND ND ND ND ND 1,2-Dichloroethane ND ND ND ND ND 1.0 μg/kg 1,1-Dichloroethene ND ND ND ND ND 1.0 μg/kg cis-1,2-Dichloroethene ND ND ND ND ND 1.0 μg/kg

1.0 μg/kg trans-1,2-Dichloroethene ND ND ND ND ND 1.0 1,2-Dichloropropane ND ND ND ND ND μg/kg 1.0 1,3-Dichloropropane ND ND ND ND ND μg/kg 2,2-Dichloropropane ND ND ND ND ND 1.0 μg/kg 1,1-Dichloropropene ND ND ND ND ND 1.0 μg/kg cis-1,3-Dichloropropene ND ND ND ND ND 1.0 $\mu g/kg$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC6-2	BC6-5	BC7-2	BC7-5	BC8-2
------------	-------	-------	-------	-------	-------

Jones ID:	ST-14526-22	ST-14526-23	ST-14526-26	ST-14526-27	ST-14526-30	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	105%	105%	103%	103%	104%	60 - 140	
Toluene-d ₈	100%	101%	100%	98%	102%	60 - 140	
4-Bromofluorobenzene	98%	101%	99%	101%	91%	60 - 140	
	VOC3-	VOC3-	VOC3-	VOC3-	VOC3-		
	102819-01	102819-01	102819-01	102819-01	102819-01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.:

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

18-41-296-02

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: BC8-5 BC9-2 BC9-5 BC10-2 BC10-5

Redondo Beach, CA

Jones ID:	ST-14526-31	ST-14526-34	ST-14526-35	ST-14526-38	ST-14526-39	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

	Sample ID:	BC8-5	BC9-2	BC9-5	BC10-2	BC10-5
--	------------	-------	-------	-------	--------	--------

Jones ID:	ST-14526-31	ST-14526-34	ST-14526-35	ST-14526-38	ST-14526-39	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>ts</u>
Dibromofluoromethane	103%	100%	99%	100%	99%	60 - 140	
Toluene-d ₈	97%	88%	88%	87%	85%	60 - 140	
4-Bromofluorobenzene	99%	93%	92%	94%	92%	60 - 140	
	VOC3-	VOC4-	VOC4-	VOC4-	VOC4-		
	102819-01	102819-01	102819-01	102819-01	102819-01		
	10=017 01	102017 01	10=017 01	10=017 01	10=017 01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

<u>Sample ID:</u> BC11-2 BC11-5 BC12-2 BC12-5 BC13-2

Redondo Beach, CA

Jones ID:	ST-14526-42	ST-14526-43	ST-14526-46	ST-14526-47	ST-14526-50	Reporting Limit	Units
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC11-2	BC11-5	BC12-2	BC12-5	BC13-2

Jones ID:	ST-14526-42	ST-14526-43	ST-14526-46	ST-14526-47	ST-14526-50	Reporting Limit	Units
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	$\mu g/kg$
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	<u>ts</u>
Dibromofluoromethane	99%	101%	99%	100%	99%	60 - 140	
Toluene-ds	87%	86%	89%	87%	88%	60 - 140	
4-Bromofluorobenzene	92%	91%	95%	92%	92%	60 - 140	
	VOC4-	VOC4-	VOC4-	VOC4-	VOC4-		
	102819-01	102819-01	102819-01	102819-01	102919-01		

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

<u>Sample ID:</u> BC13-5 BC14-5 BC15-2 BC15-5

Jones ID:	ST-14526-51	ST-14526-54	ST-14526-55	ST-14526-58	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	$\mu g/kg$
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	BC13-5	BC14-2	BC14-5	BC15-2	BC15-5

Jones ID:	ST-14526-51	ST-14526-54	ST-14526-55	ST-14526-58	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 11	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 12	ND	ND	ND	ND	ND	5.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	2.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
Methyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	0.20	mg/kg
TIC:							
Ethanol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
Dibromofluoromethane	100%	103%	102%	99%	101%	60 - 140	
Toluene-d ₈	87%	88%	86%	85%	86%	60 - 140)
4-Bromofluorobenzene	91%	92%	92%	90%	94%	60 - 140)
	VOC4- 102919-01	VOC4- 102919-01	VOC4- 102919-01	VOC4- 102919-01	VOC4- 102919-01		

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	METHOD BLANK	METHOD BLANK		
Jones ID:	102819- V3MB1	102819- V4MB1	102919- V4MB1	Reporting Limit	<u>Units</u>
Analytes:					
Benzene	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	1.0	μg/kg
cis-1,3-Dichloropropene	ND	ND	ND	1.0	μg/kg

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	METHOD BLANK	METHOD BLANK	
Jones ID:	102819- V3MB1	102819- V4MB1	102919- V4MB1	Reporting Limit Units
Analytes:				
trans-1,3-Dichloropropene	ND	ND	ND	1.0 μ g/kg
Ethylbenzene	ND	ND	ND	1.0 μ g/kg
Freon 11	ND	ND	ND	5.0 µg/kg
Freon 12	ND	ND	ND	5.0 µg/kg
Freon 113	ND	ND	ND	5.0 µg/kg
Hexachlorobutadiene	ND	ND	ND	1.0 μ g/kg
Isopropylbenzene	ND	ND	ND	1.0 μ g/kg
4-Isopropyltoluene	ND	ND	ND	1.0 μ g/kg
Methylene chloride	ND	ND	ND	1.0 μ g/kg
Naphthalene	ND	ND	ND	1.0 μ g/kg
n-Propylbenzene	ND	ND	ND	1.0 $\mu g/kg$
Styrene	ND	ND	ND	1.0 $\mu g/kg$
1,1,2-Tetrachloroethane	ND	ND	ND	1.0 µg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	1.0 µg/kg
Tetrachloroethene	ND	ND	ND	1.0 µg/kg
Toluene	ND	ND	ND	1.0 µg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	1.0 µg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	1.0 µg/kg
1,1,1-Trichloroethane	ND	ND	ND	1.0 µg/kg
1,1,2-Trichloroethane	ND	ND	ND	1.0 µg/kg
Trichloroethene	ND	ND	ND	1.0 µg/kg
1,2,3-Trichloropropane	ND	ND	ND	1.0 µg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	1.0 µg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	1.0 µg/kg
Vinyl chloride	ND	ND	ND	1.0 µg/kg
m,p-Xylene	ND	ND	ND	2.0 µg/kg
o-Xylene	ND	ND	ND	1.0 µg/kg
Methyl-tert-butylether	ND	ND	ND	5.0 μg/kg
Ethyl-tert-butylether	ND	ND	ND	5.0 μg/kg
Di-isopropylether	ND	ND	ND	5.0 μg/kg
tert-amylmethylether	ND	ND	ND	5.0 μg/kg
tert-Butylalcohol	ND	ND	ND	50.0 μg/kg
Gasoline Range Organics (C4-C12)	ND	ND	ND	0.20 mg/kg
TIC:				
Ethanol	ND	ND	ND	50.0 μg/kg
Dilution Factor	1	1	1	100
	1	1	1	
Surrogate Recoveries:	10.407	0001	0001	QC Limits
Dibromofluoromethane	104%	99%	98%	60 - 140
Toluene-d ₈	102%	88%	89%	60 - 140
4-Bromofluorobenzene	100%	92%	91%	60 - 140
	VOC3- 102819-01	VOC4- 102819-01	VOC4- 102919-01	

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/28-29/19

Project:BCHDDate Analyzed:10/28Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample Spiked:	CLEAN	GC#:	VOC3-102819-01			
Jones ID:	102819-V3MS1	102819-V3MSD1		10	2819-V3CC	V1
Demonster	MS	MSD	DDD	Acceptability	CCV	Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	113%	94%	18.4%	60 - 140	79%	80 - 120
1,1-Dichloroethene	122%	105%	15.3%	60 - 140	115%	80 - 120
Cis-1,2-Dichloroethene	118%	109%	8.3%	70 - 130	113%	80 - 120
1,1,1-Trichloroethane	121%	108%	10.8%	70 - 130	121%	80 - 120
Benzene	118%	102%	13.9%	70 - 130	116%	80 - 120
Trichloroethene	116%	100%	15.1%	70 - 130	115%	80 - 120
Toluene	118%	108%	8.5%	70 - 130	119%	80 - 120
Tetrachloroethene	122%	110%	10.9%	70 - 130	120%	80 - 120
Chlorobenzene	111%	104%	6.3%	70 - 130	115%	80 - 120
Ethylbenzene	118%	113%	5.1%	70 - 130	119%	80 - 120
1,2,4 Trimethylbenzene	123%	113%	8.2%	70 - 130	119%	80 - 120
Gasoline Range Organics (C4-C12)	119%	109%	8.9%	70 - 130		
Surrogate Recovery:						
Dibromofluoromethane	103%	103%		60 - 140	92%	60 - 140
Toluene-d ₈	102%	101%		60 - 140	96%	60 - 140
4-Bromofluorobenzene	102%	104%		60 - 140	109%	60 - 140

MS = Matrix Spike

MSD = Matrix Spike Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

Vinyl Chloride below 80% on CCV. LCS, LCSD, RPD within acceptable range. Data accepted.

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/28-29/19

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample Spiked:	CLEAN	GC#: VOC4-102819-01				
Jones ID:	102819-V4MS1	102819-V4MSD1			2819-V4CC	V1
	MS	MSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	146%	126%	14.7%	60 - 140	114%	80 - 120
1,1-Dichloroethene	76%	62%	19.0%	60 - 140	117%	80 - 120
Cis-1,2-Dichloroethene	129%	114%	11.7%	70 - 130	110%	80 - 120
1,1,1-Trichloroethane	122%	110%	10.4%	70 - 130	109%	80 - 120
Benzene	122%	110%	10.7%	70 - 130	112%	80 - 120
Trichloroethene	117%	107%	8.5%	70 - 130	107%	80 - 120
Toluene	118%	106%	10.3%	70 - 130	107%	80 - 120
Tetrachloroethene	111%	103%	7.9%	70 - 130	102%	80 - 120
Chlorobenzene	100%	100%	0.4%	70 - 130	102%	80 - 120
Ethylbenzene	119%	108%	10.0%	70 - 130	107%	80 - 120
1,2,4 Trimethylbenzene	119%	109%	9.1%	70 - 130	113%	80 - 120
Gasoline Range Organics (C4-C12)	120%	108%	10.0%	70 - 130		
Surrogate Recovery:						
Dibromofluoromethane	95%	96%		60 - 140	92%	60 - 140
Toluene-d ₈	87%	91%		60 - 140	88%	60 - 140
4-Bromofluorobenzene	93%	94%		60 - 140	95%	60 - 140

MS = Matrix Spike

MSD = Matrix Spike Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/28-29/19

Project:BCHDDate Analyzed:10/28-2Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

EPA 8260B by 5035 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample Spiked:	CLEAN	SOIL	GC#:	VOC4-102919-01			
Jones ID:	102919-V4MS1	102919-V4MSD1		10	2919-V4CC	V1	
	MS	MSD		Acceptability		Acceptability	
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)	
Vinyl chloride	124%	124%	0.2%	60 - 140	92%	80 - 120	
1,1-Dichloroethene	97%	98%	0.9%	60 - 140	95%	80 - 120	
Cis-1,2-Dichloroethene	110%	115%	4.8%	70 - 130	94%	80 - 120	
1,1,1-Trichloroethane	108%	108%	0.1%	70 - 130	90%	80 - 120	
Benzene	108%	112%	3.2%	70 - 130	94%	80 - 120	
Trichloroethene	102%	105%	2.9%	70 - 130	90%	80 - 120	
Toluene	104%	106%	1.5%	70 - 130	95%	80 - 120	
Tetrachloroethene	100%	102%	2.1%	70 - 130	89%	80 - 120	
Chlorobenzene	100%	101%	1.2%	70 - 130	88%	80 - 120	
Ethylbenzene	107%	109%	1.7%	70 - 130	96%	80 - 120	
1,2,4 Trimethylbenzene	108%	109%	1.6%	70 - 130	101%	80 - 120	
Gasoline Range Organics (C4-C12)	107%	109%	2%	70 - 130			
Surrogate Recovery:							
Dibromofluoromethane	98%	96%		60 - 140	99%	60 - 140	
Toluene-d ₈	90%	89%		60 - 140	100%	60 - 140	
4-Bromofluorobenzene	93%	92%		60 - 140	116%	60 - 140	

MS = Matrix Spike

MSD = Matrix Spike Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: Jones ID: ST-14526-01

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	32.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	8.8	1	"	"	"	0.5	mg/kg
Copper, Cu	2.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	4.4	1	"	"	"	0.5	mg/kg
Lead, Pb	1.7	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	12.4	1	**	"	"	0.5	mg/kg
Zinc, Zn	10.4	1	**	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.:

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

18-41-296-02

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC1-30 Jones ID: ST-14526-05

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	10.4	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	**	"	"	0.5	mg/kg
Cobalt, Co	1.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	6.2	1	"	"	"	0.5	mg/kg
Copper, Cu	1.5	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.7	1	**	"	"	0.5	mg/kg
Lead, Pb	0.7	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	6.0	1	**	"	"	0.5	mg/kg
Zinc, Zn	6.7	1	**	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/2Project Address:520 N. Prospect Ave,Physical State:Soil

Redondo Beach, CA

Sample ID: ST-14526-06

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	46.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.8	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	12.1	1	"	"	"	0.5	mg/kg
Copper, Cu	4.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.5	1	"	"	"	0.5	mg/kg
Lead, Pb	2.2	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	16.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	17.9	1	"	11	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.036	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC2-5 Jones ID: ST-14526-07

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	28.5	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.5	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.6	1	"	"	"	0.5	mg/kg
Copper, Cu	3.2	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	4.3	1	"	"	"	0.5	mg/kg
Lead, Pb	1.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	14.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	13.5	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC3-2 Jones ID: ST-14526-10

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	26.3	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	5.1	1	"	"	"	0.5	mg/kg
Chromium, Cr	21.5	1	"	"	"	0.5	mg/kg
Copper, Cu	3.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.6	1	"	"	"	0.5	mg/kg
Lead, Pb	1.8	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.8	1	"	"	"	0.5	mg/kg
Zinc, Zn	13.1	1	"	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.058	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: 520 N. Prospect Ave, **Project Address: Physical State:** Soil

Redondo Beach, CA

BCHD

BC3-5 Sample ID: Jones ID: ST-14526-11

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	21.1	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	17.1	1	"	"	"	0.5	mg/kg
Copper, Cu	2.8	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.4	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.2	1	"	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.100	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

714-449-9937 1 562-646-1611 S 805-399-0060 V

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC4-2 Jones ID: ST-14526-14

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	28.7	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.5	1	**	"	"	0.5	mg/kg
Cobalt, Co	2.7	1	"	"	"	0.5	mg/kg
Chromium, Cr	16.0	1	**	"	"	0.5	mg/kg
Copper, Cu	2.6	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.9	1	"	"	"	0.5	mg/kg
Lead, Pb	1.4	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	12.4	1	**	"	"	0.5	mg/kg
Zinc, Zn	11.3	1	**	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.033	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC4-5 Jones ID: ST-14526-15

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.2	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	26.6	1	"	"	"	0.5	mg/kg
Copper, Cu	3.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	9.1	1	"	"	"	0.5	mg/kg
Lead, Pb	1.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	17.0	1	"	11	"	0.5	mg/kg
Zinc, Zn	11.6	1	"	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.052	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/201Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC5-2 Jones ID: ST-14526-18

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	21.2	1	**	"	"	0.5	mg/kg
Beryllium, Be	ND	1	**	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	**	"	"	0.5	mg/kg
Cobalt, Co	2.6	1	**	"	"	0.5	mg/kg
Chromium, Cr	14.5	1	**	"	"	0.5	mg/kg
Copper, Cu	2.5	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	0.7	1	**	"	"	0.5	mg/kg
Nickel, Ni	5.2	1	**	"	"	0.5	mg/kg
Lead, Pb	2.1	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	**	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	12.0	1	**	"	"	0.5	mg/kg
Zinc, Zn	10.6	1	**	11	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.030	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Jones ID:

ST-14526-19

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BC5-5

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	27.9	1	**	"	"	0.5	mg/kg
Beryllium, Be	ND	1	**	"	"	0.5	mg/kg
Cadmium, Cd	0.9	1	**	11	"	0.5	mg/kg
Cobalt, Co	4.4	1	**	"	"	0.5	mg/kg
Chromium, Cr	22.7	1	**	"	"	0.5	mg/kg
Copper, Cu	3.1	1	**	11	"	1.0	mg/kg
Molybdenum, Mo	ND	1	**	"	"	0.5	mg/kg
Nickel, Ni	8.5	1	**	"	"	0.5	mg/kg
Lead, Pb	2.1	1	**	11	"	0.5	mg/kg
Antimony, Sb	ND	1	**	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	11	"	5.0	mg/kg
Vanadium, V	21.8	1	**	"	"	0.5	mg/kg
Zinc, Zn	14.8	1	**	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.058	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Sample ID:

714-449-9937 1100 562-646-1611 SAN 805-399-0060 WW

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC6-2 Jones ID: ST-14526-22

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	32.1	1	**	"	"	0.5	mg/kg
Beryllium, Be	ND	1	**	"	"	0.5	mg/kg
Cadmium, Cd	1.0	1	**	"	"	0.5	mg/kg
Cobalt, Co	4.6	1	**	"	"	0.5	mg/kg
Chromium, Cr	27.0	1	**	"	"	0.5	mg/kg
Copper, Cu	3.2	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	**	"	"	0.5	mg/kg
Nickel, Ni	9.7	1	**	"	"	0.5	mg/kg
Lead, Pb	2.3	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	**	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	23.4	1	**	11	"	0.5	mg/kg
Zinc, Zn	14.7	1	**	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.045	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: 520 N. Prospect Ave, **Project Address: Physical State:** Soil

Redondo Beach, CA

BC6-5 Sample ID: Jones ID: ST-14526-23

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	33.6	1	**	"	"	0.5	mg/kg
Beryllium, Be	ND	1	**	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	**	11	"	0.5	mg/kg
Cobalt, Co	3.6	1	**	"	"	0.5	mg/kg
Chromium, Cr	11.6	1	**	"	"	0.5	mg/kg
Copper, Cu	3.6	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	**	"	"	0.5	mg/kg
Nickel, Ni	5.4	1	**	"	"	0.5	mg/kg
Lead, Pb	2.1	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	**	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	15.2	1	**	"	"	0.5	mg/kg
Zinc, Zn	12.1	1	**	11	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.072	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

714-449-9937 11007 FOREST PLACE 562-646-1611 805-399-0060

SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019

BCHD Date Analyzed: Project:

520 N. Prospect Ave, **Project Address: Physical State:** Soil Redondo Beach, CA

BC7-2 Sample ID: Jones ID: ST-14526-26

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	19.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	**	"	"	0.5	mg/kg
Cobalt, Co	2.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.2	1	"	"	"	0.5	mg/kg
Copper, Cu	2.9	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.3	1	**	"	"	0.5	mg/kg
Lead, Pb	2.9	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	12.0	1	**	"	"	0.5	mg/kg
Zinc, Zn	11.8	1	**	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.036	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/20Project Address:520 N. Prospect Ave,Physical State:Soil

Soil Redondo Beach, CA

Physical State: Soil

Sample ID: BC7-5 Jones ID: ST-14526-27

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	17.8	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	13.7	1	"	"	"	0.5	mg/kg
Copper, Cu	2.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.6	1	"	"	"	0.5	mg/kg
Lead, Pb	1.2	1	"	**	**	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	**	5.0	mg/kg
Thallium, Tl	ND	1	"	"	**	5.0	mg/kg
Vanadium, V	10.4	1	"	**	**	0.5	mg/kg
Zinc, Zn	10.1	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.041	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC8-2 Jones ID: ST-14526-30

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	36.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.2	1	"	"	"	0.5	mg/kg
Chromium, Cr	16.5	1	"	"	"	0.5	mg/kg
Copper, Cu	3.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	0.9	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.9	1	"	"	"	0.5	mg/kg
Lead, Pb	2.0	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	12.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	ND	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

714-449-9937 | 11007 FORES' 562-646-1611 | SANTA FE SP 805-399-0060 | WWW.JONES

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.:

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

18-41-296-02

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: BC8-5 Jones ID: ST-14526-31

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	14.0	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	1.6	1	"	"	"	0.5	mg/kg
Chromium, Cr	9.6	1	"	"	"	0.5	mg/kg
Copper, Cu	1.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.6	1	"	"	"	0.5	mg/kg
Lead, Pb	1.0	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	8.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	6.7	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.046	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

714-449-9937 | 11007 | 562-646-1611 | SANTA 805-399-0060 | WWW.

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/2019Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave,
Redondo Beach, CA

Physical State: Soil

<u>Sample ID:</u> BC9-2 <u>Jones ID:</u> ST-14526-34

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	20.7	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	15.4	1	"	"	"	0.5	mg/kg
Copper, Cu	2.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	4.9	1	"	"	"	0.5	mg/kg
Lead, Pb	1.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.0	1	"	"	"	0.5	mg/kg
Zinc, Zn	31.6	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.078	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC9-5 Jones ID: ST-14526-35

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	17.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	1.8	1	"	"	"	0.5	mg/kg
Chromium, Cr	12.3	1	"	"	"	0.5	mg/kg
Copper, Cu	2.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.0	1	"	"	"	0.5	mg/kg
Lead, Pb	0.9	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	11.3	1	"	"	"	0.5	mg/kg
Zinc, Zn	9.8	1	"	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.093	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/3Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-38

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	25.8	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	**	"	"	0.5	mg/kg
Cobalt, Co	2.8	1	"	"	"	0.5	mg/kg
Chromium, Cr	14.4	1	"	"	"	0.5	mg/kg
Copper, Cu	4.2	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.0	1	"	"	"	0.5	mg/kg
Lead, Pb	4.7	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	12.9	1	**	"	"	0.5	mg/kg
Zinc, Zn	22.0	1	**	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.085	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

Sample ID: Jones ID: ST-14526-39

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102502	10/25/2019	10/25/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	20.5	1	**	"	"	0.5	mg/kg
Beryllium, Be	ND	1	**	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	**	"	"	0.5	mg/kg
Cobalt, Co	3.0	1	**	"	"	0.5	mg/kg
Chromium, Cr	17.5	1	**	"	"	0.5	mg/kg
Copper, Cu	2.7	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	**	"	"	0.5	mg/kg
Nickel, Ni	8.5	1	**	"	"	0.5	mg/kg
Lead, Pb	1.3	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	**	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	13.5	1	**	"	"	0.5	mg/kg
Zinc, Zn	11.0	1	**	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.094	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

ND= Not Detected

Project:

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-42

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	35.3	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	12.5	1	"	"	"	0.5	mg/kg
Copper, Cu	3.5	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	8.6	1	"	"	"	0.5	mg/kg
Lead, Pb	2.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.6	1	"	"	"	0.5	mg/kg
Zinc, Zn	19.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.047	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 | 11007 F6 562-646-1611 | SANTA 805-399-0060 | WWW.J

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20
Project Address: 520 N. Prospect Ave, Physical State: Soil

ress: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-43

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.2	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.8	1	"	"	"	0.5	mg/kg
Copper, Cu	3.9	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.3	1	"	"	"	0.5	mg/kg
Lead, Pb	1.9	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	15.1	1	"	"	"	0.5	mg/kg
Zinc, Zn	17.5	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.029	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 11007 FO 562-646-1611 SANTA FI 805-399-0060 WWW.JO

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC12-2 Jones ID: ST-14526-46

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	13.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	11	"	0.5	mg/kg
Cobalt, Co	2.1	1	"	"	"	0.5	mg/kg
Chromium, Cr	8.4	1	"	11	"	0.5	mg/kg
Copper, Cu	2.0	1	"	11	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	11	"	0.5	mg/kg
Nickel, Ni	3.3	1	"	11	"	0.5	mg/kg
Lead, Pb	1.1	1	"	11	"	0.5	mg/kg
Antimony, Sb	ND	1	"	11	"	5.0	mg/kg
Selenium, Se	ND	1	"	11	"	5.0	mg/kg
Thallium, Tl	ND	1	"	11	"	5.0	mg/kg
Vanadium, V	9.0	1	**	"	"	0.5	mg/kg
Zinc, Zn	7.2	1	"	11	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.141	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-47

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	26.5	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.7	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	28.6	1	"	"	"	0.5	mg/kg
Copper, Cu	3.3	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	7.7	1	"	"	"	0.5	mg/kg
Lead, Pb	1.5	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	18.4	1	"	"	"	0.5	mg/kg
Zinc, Zn	12.6	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.234	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 | 11007 FO 562-646-1611 | SANTA FI 805-399-0060 | WWW.JO

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/3Project Address:520 N. Prospect Ave,Physical State:Soil

Redondo Beach, CA

Sample ID: BC13-2 Jones ID: ST-14526-50

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	24.6	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.5	1	"	"	"	0.5	mg/kg
Cobalt, Co	4.1	1	"	"	"	0.5	mg/kg
Chromium, Cr	10.3	1	"	"	"	0.5	mg/kg
Copper, Cu	2.8	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.9	1	"	"	"	0.5	mg/kg
Lead, Pb	1.4	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	12.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	11.0	1	"	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.043	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 1100 562-646-1611 SAN 805-399-0060 WW

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/20
Project Address: 520 N. Prospect Ave, Physical State: Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

<u>Sample ID:</u> BC13-5 <u>Jones ID:</u> ST-14526-51

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	Prepared	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	**	"	"	5.0	mg/kg
Barium, Ba	48.0	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	1.0	1	**	"	"	0.5	mg/kg
Cobalt, Co	6.0	1	"	"	"	0.5	mg/kg
Chromium, Cr	30.1	1	**	"	"	0.5	mg/kg
Copper, Cu	5.4	1	**	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	11.2	1	"	"	"	0.5	mg/kg
Lead, Pb	2.4	1	**	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	**	"	"	5.0	mg/kg
Thallium, Tl	ND	1	**	"	"	5.0	mg/kg
Vanadium, V	23.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	18.5	1	**	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.088	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-54

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	35.1	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.2	1	"	"	"	0.5	mg/kg
Chromium, Cr	11.1	1	"	"	"	0.5	mg/kg
Copper, Cu	4.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	6.6	1	"	"	"	0.5	mg/kg
Lead, Pb	7.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	14.6	1	"	"	"	0.5	mg/kg
Zinc, Zn	23.1	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.042	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 | 11007 FC 562-646-1611 | SANTA I 805-399-0060 | WWW.JG

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/201

Project Address: 520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: BC14-5 Jones ID: ST-14526-55

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	17.9	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	ND	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.4	1	"	"	"	0.5	mg/kg
Chromium, Cr	9.9	1	"	"	"	0.5	mg/kg
Copper, Cu	2.0	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	3.5	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	**	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	**	5.0	mg/kg
Thallium, Tl	ND	1	"	"	**	5.0	mg/kg
Vanadium, V	11.1	1	"	"	**	0.5	mg/kg
Zinc, Zn	8.0	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.076	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Converse Consultants Report date: 11/1/2019 **Client:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526 **Client Address:**

Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Michael Van Fleet 10/23-24/2019 **Date Sampled:** Attn:

> **Date Received:** 10/24/2019 10/25,28,29/2019 **Date Analyzed:**

Project: 520 N. Prospect Ave, **Project Address: Physical State:** Soil

Redondo Beach, CA

Sample ID: BC15-2 Jones ID: ST-14526-58

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

BCHD

	Result	<u>Dilution</u>	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	54.9	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	2.8	1	"	"	"	0.5	mg/kg
Chromium, Cr	8. 7	1	"	"	"	0.5	mg/kg
Copper, Cu	3.7	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.9	1	"	"	"	0.5	mg/kg
Lead, Pb	3.6	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	11.5	1	"	"	"	0.5	mg/kg
Zinc, Zn	16.9	1	"	"	"	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.030	1	H19102501	10/25/2019	10/25/2019	0.020	mg/kg

714-449-9937 11 562-646-1611 SA 805-399-0060 W

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project:BCHDDate Analyzed:10/25,28,29/2019Project Address:520 N. Prospect Ave,Physical State:Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

Sample ID: ST-14526-59

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	<u>Dilution</u>	Batch	<u>Prepared</u>	<u>Analyzed</u>	Reporting Limit	<u>Units</u>
Analytes:							
Silver, Ag	ND	1	I19102801	10/28/2019	10/29/2019	0.5	mg/kg
Arsenic, As	ND	1	"	"	"	5.0	mg/kg
Barium, Ba	27.2	1	"	"	"	0.5	mg/kg
Beryllium, Be	ND	1	"	"	"	0.5	mg/kg
Cadmium, Cd	0.6	1	"	"	"	0.5	mg/kg
Cobalt, Co	3.3	1	"	"	"	0.5	mg/kg
Chromium, Cr	14.9	1	"	"	"	0.5	mg/kg
Copper, Cu	2.8	1	"	"	"	1.0	mg/kg
Molybdenum, Mo	ND	1	"	"	"	0.5	mg/kg
Nickel, Ni	5.2	1	"	"	"	0.5	mg/kg
Lead, Pb	1.3	1	"	"	"	0.5	mg/kg
Antimony, Sb	ND	1	"	"	"	5.0	mg/kg
Selenium, Se	ND	1	"	"	"	5.0	mg/kg
Thallium, Tl	ND	1	"	"	"	5.0	mg/kg
Vanadium, V	13.9	1	"	"	"	0.5	mg/kg
Zinc, Zn	10.8	1	"	"	**	5.0	mg/kg

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

	Result	Dilution	Batch	Prepared	Analyzed	Reporting Limit	<u>Units</u>
Mercury, Hg	0.055	1	H19102801	10/28/2019	10/28/2019	0.020	mg/kg

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 562-646-1611 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Converse Consultants Report date: **Client:** 11/1/2019 **Client Address:**

717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Client Ref. No.: 18-41-296-02 Monrovia, CA 91016

Michael Van Fleet 10/23-24/2019 Attn: **Date Sampled:**

> **Date Received:** 10/24/2019

10/25,28,29/2019 **Project: BCHD Date Analyzed:**

Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

I19102502 **BATCH:** Prepared: 10/25/2019 Analyzed: 10/28/2019

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Spike Level	% REC	% REC Limits	% RPD	Reporting Limit	Units
Analytes:		•				1 0	
METHOD BLANK:	I191025-MB2						
Silver, Ag	ND					0.5	mg/kg
Arsenic, As	ND					5.0	mg/kg
Barium, Ba	ND					0.5	mg/kg
Beryllium, Be	ND					0.5	mg/kg
Cadmium, Cd	ND					0.5	mg/kg
Cobalt, Co	ND					0.5	mg/kg
Chromium, Cr	ND					0.5	mg/kg
Copper, Cu	ND					1.0	mg/kg
Molybdenum, Mo	ND					0.5	mg/kg
Nickel, Ni	ND					0.5	mg/kg
Lead, Pb	ND					0.5	mg/kg
Antimony, Sb	ND					5.0	mg/kg
Selenium, Se	ND					5.0	mg/kg
Thallium, Tl	ND					5.0	mg/kg
Vanadium, V	ND					0.5	mg/kg
Zinc, Zn	ND					5.0	mg/kg

714-449-9937 1 562-646-1611 S 805-399-0060 V

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,2

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

BATCH: I19102502 Prepared: 10/25/2019 Analyzed: 10/28/2019

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Spike Level	% REC	% RPD	% REC Limits	
Analytes:		~ F				Units
LCS:	I191025-LCS	2				
Barium, Ba	208	200	104%		80 - 120	mg/kg
Cobalt, Co	51.3	50.0	103%		80 - 120	mg/kg
Lead, Pb	53.6	50.0	107%		80 - 120	mg/kg
Selenium, Se	204	200	102%		80 - 120	mg/kg
Zinc, Zn	47.8	50.0	96%		80 - 120	mg/kg
LCSD:	I191025-LCS	D2				
Barium, Ba	207	200	104%	0.4%	80 - 120	mg/kg
Cobalt, Co	51.2	50.0	102%	0.2%	80 - 120	mg/kg
Lead, Pb	53.0	50.0	106%	1.1%	80 - 120	mg/kg
Selenium, Se	201	200	101%	1.2%	80 - 120	mg/kg
Zinc, Zn	47.7	50.0	95%	0.3%	80 - 120	mg/kg
CCV:	I191028-CCV	72				
Barium, Ba	0.98	1.00	98%		90-110	mg/L
Cobalt, Co	1.00	1.00	100%		90-110	mg/L
Lead, Pb	1.01	1.00	101%		90-110	mg/L
Selenium, Se	1.01	1.00	101%		90-110	mg/L
Zinc, Zn	0.96	1.00	96%		90-110	mg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 15\%$

Report date:

Jones Ref. No.: ST-14526 Client Ref. No.: 18-41-296-02

11/1/2019

 $\mu g/L$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants

Client Address: 717 S. Myrtle Ave.

Monrovia, CA 91016

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

 Project:
 BCHD

 Date Received:
 10/24/2019

 Date Analyzed:
 10/25,28,29/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

BATCH: H19102501 Prepared: 10/25/2019 **Analyzed:** 10/25/2019

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
METHOD BLANK:	H191025-MB1						
Mercury, Hg	ND					0.020	mg/kg
LCS:	H191025-LCS	1					
Mercury, Hg	0.99	1.00	99%		80 - 120		mg/kg
LCSD:	H191025-LCSI	D1					
Mercury, Hg	0.99	1.00	99%	0.4%	80 - 120		mg/kg
CCV:	H191025-CCV						

95%

90-110

ND= Not Detected

Mercury, Hg

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

4.74

5.00

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 562-646-1611 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Converse Consultants **Client:** Report date: 11/1/2019 **Client Address:**

717 S. Myrtle Ave. Jones Ref. No.: ST-14526

18-41-296-02 Client Ref. No.: Monrovia, CA 91016

Michael Van Fleet 10/23-24/2019 Attn: **Date Sampled:**

> **Date Received:** 10/24/2019 10/25,28,29/2019

Project: BCHD Date Analyzed: Project Address:

520 N. Prospect Ave, **Physical State:** Soil Redondo Beach, CA

I19102801 **BATCH:** Prepared: 10/28/2019 Analyzed: 10/29/2019

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Spike Level	% REC	% REC Limits	% RPD	Reporting Limit	Units
Analytes:							
METHOD BLANK:	I191028-MB1						
Silver, Ag	ND					0.5	mg/kg
Arsenic, As	ND					5.0	mg/kg
Barium, Ba	ND					0.5	mg/kg
Beryllium, Be	ND					0.5	mg/kg
Cadmium, Cd	ND					0.5	mg/kg
Cobalt, Co	ND					0.5	mg/kg
Chromium, Cr	ND					0.5	mg/kg
Copper, Cu	ND					1.0	mg/kg
Molybdenum, Mo	ND					0.5	mg/kg
Nickel, Ni	ND					0.5	mg/kg
Lead, Pb	ND					0.5	mg/kg
Antimony, Sb	ND					5.0	mg/kg
Selenium, Se	ND					5.0	mg/kg
Thallium, Tl	ND					5.0	mg/kg
Vanadium, V	ND					0.5	mg/kg
Zinc, Zn	ND					5.0	mg/kg

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019

Client Address: 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28,29/2019

Project: BCHD Date Analyzed: 10/25,28,29/2
Project Address: 520 N. Prospect Ave, Physical State: Soil

520 N. Prospect Ave, Physical State: Soil Redondo Beach, CA

BATCH: I19102801 Prepared: 10/28/2019 **Analyzed:** 10/29/2019

EPA 6010B by 3050 - Title 22 CAM 17 Trace Metals by ICP-OES

	Result	Spike Level	% REC	% RPD	% REC Limits	TT*4
Analytes:						Units
LCS:	I191028-LCS1					
Barium, Ba	190	200	95%		80 - 120	mg/kg
Cobalt, Co	46.3	50.0	93%		80 - 120	mg/kg
Lead, Pb	47.8	50.0	96%		80 - 120	mg/kg
Selenium, Se	181	200	91%		80 - 120	mg/kg
Zinc, Zn	43.0	50.0	86%		80 - 120	mg/kg
LCSD:	I191028-LCS1					
Barium, Ba	195	200	97%	2.8%	80 - 120	mg/kg
Cobalt, Co	47.7	50.0	95%	2.9%	80 - 120	mg/kg
Lead, Pb	49.2	50.0	98%	2.9%	80 - 120	mg/kg
Selenium, Se	187	200	94%	3.0%	80 - 120	mg/kg
Zinc, Zn	44.0	50.0	88%	2.2%	80 - 120	mg/kg
CCV:	I191029-CCV	1				
Barium, Ba	0.99	1.00	99%		90-110	mg/L
Cobalt, Co	0.96	1.00	96%		90-110	mg/L
Lead, Pb	1.04	1.00	104%		90-110	mg/L
Selenium, Se	1.05	1.00	105%		90-110	mg/L
Zinc, Zn	0.96	1.00	96%		90-110	mg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 15\%$

Report date:

Jones Ref. No.:

Date Sampled: Date Received:

Date Analyzed:

Physical State:

Client Ref. No.: 18-41-296-02

11/1/2019

ST-14526

10/23-24/2019

10/24/2019 10/25,28,29/2019

Soil

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants

717 S. Myrtle Ave.

Monrovia, CA 91016

Attn: Michael Van Fleet

Project: BCHD

Client Address:

Project Address: 520 N. Prospect Ave,

Redondo Beach, CA

BATCH: H19102801 Prepared: 10/28/2019 **Analyzed:** 10/28/2019

EPA 7471A - Mercury by Cold Vapor Atomic Absorption

Analytes:	Result	Spike Level	% REC	% RPD	% REC Limits	Reporting Limit	Units
METHOD BLANK:	H191028-MB1						
Mercury, Hg	ND					0.020	mg/kg

LCS:	H191028-LCS1				
Mercury, Hg	1.03	1.00	103%	80 - 120	mg/kg

LCSD:	H191028-LCSE	01				
Mercury, Hg	1.02	1.00	102%	0.009756098	80-120	mg/kg

CCV:	H191028-CCV1				
Mercury, Hg	4.75	5.00	95%	90-110	μg/L

ND= Not Detected

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,28Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-01

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		<u>QC Limits</u>
TCMX	46%	30 - 120
Decachlorobiphenyl	55%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: BC2-2 Jones ID: ST-14526-06

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
*						*	1.0 8

Surrogate Recoveries:		QC Limits
TCMX	44%	30 - 120
Decachlorobiphenyl	45%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: BC3-2 Jones ID: ST-14526-10

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	60%	30 - 120
Decachlorobiphenyl	56%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,28Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: BC4-2 Jones ID: ST-14526-14

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	51%	30 - 120
Decachlorobiphenyl	44%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-18

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	II .	**	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	II .	**	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	56%	30 - 120
Decachlorobiphenyl	51%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: BC6-2 Jones ID: ST-14526-22

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	11	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	50%	30 - 120
Decachlorobiphenyl	52%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,2Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-26

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
*						*	1.0 8

Surrogate Recoveries:		<u>QC Limits</u>
TCMX	49%	30 - 120
Decachlorobiphenyl	51%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

Sample ID: BC8-2 Jones ID: ST-14526-30

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	II .	**	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	II .	**	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	11	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	33%	30 - 120
Decachlorobiphenyl	53%	30 - 120

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 562-646-1611 805-399-0060

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 Jones Ref. No.: **Client Address:** 717 S Myrtle Ave ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

BC9-2 **Jones ID:** ST-14526-34 Sample ID:

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
*						*	1.0 8

Surrogate Recoveries:	QC Limits	
TCMX	40%	30 - 120
Decachlorobiphenyl	39%	30 - 120

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 805-399-0060

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

Jones ID: ST-14526-38 Sample ID: BC10-2

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	254	10	"	"	"	10	μg/kg
4,4'-DDT	30.0	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	$\mu g/kg$
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:	QC Limits	
TCMX	46%	30 - 120
Decachlorobiphenyl	53%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

30 - 120

Project: BCHD Date Analyzed: 10/25,28/2019

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

Sample ID: Jones ID: ST-14526-42

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102819_01	10/28/2019	10/28/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	69%	30 - 120

84%

Decachlorobiphenyl

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM 562-646-1611 805-399-0060

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019 **Client Address:** 717 S Myrtle Ave Jones Ref. No.: ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet **Date Sampled:** 10/23/2019 Attn:

> **Date Received:** 10/24/2019 10/25,28/2019 **Date Analyzed:**

Project: Project Address: 520 N. Prospect Ave **Physical State:** Soil

Redondo Beach, CA

Jones ID: ST-14526-46 Sample ID: BC12-2

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

BCHD

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
*						*	1.0 8

Surrogate Recoveries:	QC Limits	
TCMX	95%	30 - 120
Decachlorobiphenyl	106%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

<u>Sample ID:</u> BC13-2 <u>Jones ID:</u> ST-14526-50

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg
*						*	1.0 8

Surrogate Recoveries:	QC Limits	
TCMX	83%	30 - 120
Decachlorobiphenyl	99%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Jones ID: ST-14526-54

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	II .	**	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	59%	30 - 120
Decachlorobiphenyl	70%	30 - 120

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,28/2Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

<u>Sample ID:</u> BC15-2 <u>Jones ID:</u> ST-14526-58

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	61%	30 - 120
Decachlorobiphenyl	77%	30 - 120

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project: BCHD Date Analyzed: 10/25,28/2019

Project Address: 520 N. Prospect Ave Physical State: Soil

Redondo Beach, CA

Sample ID: Method Blank Jones ID: MB-102519_01

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	Prepared	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102519_01	10/25/2019	10/25/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	11	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	11	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	76%	30 - 120
Decachlorobiphenyl	71%	30 - 120

714-449-9937 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S Myrtle AveJones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,28Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

	LCS	LCSD	% RPD	Spike Level	% Recovery Limits	Units
	LCS-102519_01	LCSD-102519	_01			
Analytes:						
α-ВНС	95.4	90.8	5%	100	60 - 140	ppb
γ-Chlordane	101	92.2	9%	100	60 - 140	ppb
Aldrin	100	93.9	6%	100	60 - 140	ppb
4,4'-DDD	109	97.4	11%	100	60 - 140	ppb
4,4'-DDE	105	93.7	11%	100	60 - 140	ppb
4,4'-DDT	100	89.9	11%	100	60 - 140	ppb
Dieldrin	113	103	9%	100	60 - 140	ppb
Endosulfan I	99.3	91.7	8%	100	60 - 140	ppb
Endosulfan II	115	105	9%	100	60 - 140	ppb
Endrin	107	97.8	9%	100	60 - 140	ppb
Endrin ketone	107	97.9	9%	100	60 - 140	ppb
Heptachlor	97.5	91.5	6%	100	60 - 140	ppb
Heptachlor epoxide	99.9	93.9	6%	100	60 - 140	ppb
Surrogate Recoveries:						
TCMX	92%	86%			30 - 120	
Decachlorobiphenyl	101%	92%			30 - 120	

LCS= Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

RPD = Relative Percent Difference

714-449-9937 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,3Project Address:520 N. Prospect AvePhysical State:Soil

Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

	Result	Spike Level	% Recovery	% Recovery Limits	Units
CCV:	CCV-102519_	_01			
Analytes:					
α-ВНС	92.3	100	92%	80-120	ppb
γ-Chlordane	90.1	100	90%	80-120	ppb
Aldrin	93.9	100	94%	80-120	ppb
4,4'-DDD	96.9	100	97%	80-120	ppb
4,4'-DDE	90.7	100	91%	80-120	ppb
4,4'-DDT	81.7	100	82%	80-120	ppb
Dieldrin	101	100	101%	80-120	ppb
Endosulfan I	90.2	100	90%	80-120	ppb
Endosulfan II	102	100	102%	80-120	ppb
Endrin	91.8	100	92%	80-120	ppb
Endrin ketone	91.8	100	92%	80-120	ppb
Heptachlor	90.8	100	91%	80-120	ppb
Heptachlor epoxide	90.7	100	91%	80-120	ppb
Surrogate Recovery:					
TCMX	93%			30-120	
Decachlorobiphenyl	90%			30-120	

CCV= Continuing Calibration Verification

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Date Sampled: 10/23/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/25,28/2019

Project:BCHDDate Analyzed:10/25,3Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

Sample ID: Method Blank Jones ID: MB-102819_01

Analytes:	Result	<u>Dilution</u>	<u>Batch</u>	<u>Prepared</u>	<u>Analyzed</u>	Practical Quantitation Limit	<u>Units</u>
Aldrin	ND	1	8081 _102819_01	10/28/2019	10/28/2019	10	μg/kg
α-ВНС	ND	1	"	"	"	10	μg/kg
β-ВНС	ND	1	"	"	"	10	μg/kg
γ-BHC (Lindane)	ND	1	"	"	"	10	μg/kg
δ-ВНС	ND	1	"	"	"	10	μg/kg
γ-Chlordane	ND	1	"	"	"	10	μg/kg
α-Chlordane	ND	1	"	"	"	10	μg/kg
4,4'-DDD	ND	1	"	"	"	10	μg/kg
4,4'-DDE	ND	1	"	"	"	10	μg/kg
4,4'-DDT	ND	1	"	"	"	10	μg/kg
Dieldrin	ND	1	"	"	"	10	μg/kg
Endosulfan I	ND	1	"	"	"	10	μg/kg
Endosulfan II	ND	1	"	"	"	10	μg/kg
Endosulfan sulfate	ND	1	"	"	"	10	μg/kg
Endrin	ND	1	"	"	"	10	μg/kg
Endrin aldehyde	ND	1	"	"	"	10	μg/kg
Endrin ketone	ND	1	"	"	"	10	μg/kg
Heptachlor	ND	1	"	"	"	10	μg/kg
Heptachlor epoxide	ND	1	"	"	"	10	μg/kg
Methoxychlor	ND	1	"	"	"	20	μg/kg

Surrogate Recoveries:		QC Limits
TCMX	82%	30 - 120
Decachlorobiphenyl	94%	30 - 120

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019 Jones Ref. No.: **Client Address:** 717 S Myrtle Ave ST-14526

> Monrovia, CA 91016 18-41-296-02 Client Ref. No.:

Mike Van Fleet Attn: **Date Sampled:** 10/23/2019

> **Date Received:** 10/24/2019 10/25,28/2019

Project: BCHD Date Analyzed: Project Address: Soil

520 N. Prospect Ave **Physical State:**

Redondo Beach, CA

BATCH: 8081 _102819_01 **Prepared:** 10/28/2019 **Analyzed:** 10/28/2019

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

	LCS	LCSD	% RPD	Spike Level	% Recovery Limits	Units
	LCS-102819_01	LCSD-102819	_01			
Analytes:						
α-ВНС	86.3	83.6	3%	100	60 - 140	ppb
γ-Chlordane	92.8	96.1	3%	100	60 - 140	ppb
Aldrin	91.3	85.0	7%	100	60 - 140	ppb
4,4'-DDD	97.3	93.1	4%	100	60 - 140	ppb
4,4'-DDE	94.3	87.0	8%	100	60 - 140	ppb
4,4'-DDT	91.2	84.3	8%	100	60 - 140	ppb
Dieldrin	105	96.8	8%	100	60 - 140	ppb
Endosulfan I	92.4	85.3	8%	100	60 - 140	ppb
Endosulfan II	108	99.5	8%	100	60 - 140	ppb
Endrin	97.7	90.0	8%	100	60 - 140	ppb
Endrin ketone	100	93.0	7%	100	60 - 140	ppb
Heptachlor	89.0	82.7	7%	100	60 - 140	ppb
Heptachlor epoxide	91.5	85.6	7%	100	60 - 140	ppb
Surrogate Recoveries:						
TCMX	99%	93%			30 - 120	
Decachlorobiphenyl	112%	108%			30 - 120	

LCS= Laboratory Control Sample

LCSD= Laboratory Control Sample Duplicate

RPD = Relative Percent Difference

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019
Client Address: 717 S Myrtle Ave Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Mike Van Fleet Date Sampled: 10/23/2019

Date Received: 10/24/2019

Project:BCHDDate Analyzed:10/25,28/2019Project Address:520 N. Prospect AvePhysical State:Soil

520 N. Prospect Ave Physical State: Soil Redondo Beach, CA

EPA 8081A by 3546 - Chlorinated Pesticides by GC/ECD

	Result	Spike Level	% Recovery	% Recovery Limits	Units
CCV:	CCV-102819_	01			
Analytes:					
α-ВНС	92.9	100	93%	80-120	ppb
γ-Chlordane	90.2	100	90%	80-120	ppb
Aldrin	93.7	100	94%	80-120	ppb
4,4'-DDD	97.1	100	97%	80-120	ppb
4,4'-DDE	90.5	100	91%	80-120	ppb
4,4'-DDT	81.2	100	81%	80-120	ppb
Dieldrin	100	100	100%	80-120	ppb
Endosulfan I	90.7	100	91%	80-120	ppb
Endosulfan II	99.7	100	100%	80-120	ppb
Endrin	90.5	100	91%	80-120	ppb
Endrin ketone	94.1	100	94%	80-120	ppb
Heptachlor	90.1	100	90%	80-120	ppb
Heptachlor epoxide	91.7	100	92%	80-120	ppb
Surrogate Recovery:					
TCMX	90%			30-120	
Decachlorobiphenyl	94%			30-120	

CCV= Continuing Calibration Verification

JONES ENVIRONMENTAL LABORATORY RESULTS

Client:Converse ConsultantsReport date:11/1/2019Client Address:717 S. Myrtle Ave.Jones Ref. No.:ST-14526

Monrovia, CA 91016 Client Ref. No.: 18-41-296-02

Attn: Michael Van Fleet Date Sampled: 10/23-24/2019

Date Received: 10/24/2019 **Date Analyzed:** 10/30/2019

Project Address: 520 N. Prospect Ave, Physical State: Soil

Redondo Beach, CA

BCHD

Project:

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

<u>Sample ID:</u> BC11-5 BC12-5 BC13-5 BC14-5 BC15-5

Jones ID:	ST-14526-43	ST-14526-47	ST-14526-51	ST-14526-55	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
1,4 Dioxane	ND	ND	ND	ND	ND	200	μg/kg
Phenol	ND	ND	ND	ND	ND	100	μg/kg
Bis(2-chloroethyl) ether	ND	ND	ND	ND	ND	100	μg/kg
2-Chlorophenol	ND	ND	ND	ND	ND	100	μg/kg
1, 3 Dichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
1, 4 Dichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
1, 2 Dichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
o-Cresol	ND	ND	ND	ND	ND	100	μg/kg
m, p-Cresols++	ND	ND	ND	ND	ND	100	μg/kg
Hexachloroethane	ND	ND	ND	ND	ND	100	μg/kg
Nitrobenzene	ND	ND	ND	ND	ND	100	μg/kg
Isophorone	ND	ND	ND	ND	ND	100	μg/kg
Bis(2-chloroethoxy) methane	ND	ND	ND	ND	ND	100	μg/kg
2, 4 dichlorophenol	ND	ND	ND	ND	ND	100	μg/kg
1, 2, 4 Trichlorobenzene	ND	ND	ND	ND	ND	100	μg/kg
Naphthalene	ND	ND	ND	ND	ND	100	μg/kg
4-Chloroanaline	ND	ND	ND	ND	ND	100	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	100	μg/kg
4-Chloro-3-methylphenol	ND	ND	ND	ND	ND	100	μg/kg
2-Methylnaphthalene	ND	ND	ND	ND	ND	100	μg/kg
1-Methylnaphthalene	ND	ND	ND	ND	ND	100	μg/kg
Hexachlorocyclpentadiene	ND	ND	ND	ND	ND	100	μg/kg
2, 4, 6 Trichlorophenol	ND	ND	ND	ND	ND	100	μg/kg
2, 4, 5 Trichlorophenol	ND	ND	ND	ND	ND	100	μg/kg
2-Chloronaphthalene	ND	ND	ND	ND	ND	100	μg/kg
2-Nitroanaline	ND	ND	ND	ND	ND	100	μg/kg
Dimethylphthalate	ND	ND	ND	ND	ND	100	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

Sample ID:	BC11-5	BC12-5	BC13-5	BC14-5	BC15-5		
Jones ID:	ST-14526-43	ST-14526-47	ST-14526-51	ST-14526-55	ST-14526-59	Reporting Limit	<u>Units</u>
Analytes:							
Acenaphthalene	ND	ND	ND	ND	ND	100	μg/kg
3-Nitroanaline	ND	ND	ND	ND	ND	100	μg/kg
Acenapthene	ND	ND	ND	ND	ND	100	μg/kg
2, 4 Dinitrotoluene	ND	ND	ND	ND	ND	100	μg/kg
Dibenzofuran	ND	ND	ND	ND	ND	100	μg/kg
2, 3, 4, 5 Tetrachlorophenol	ND	ND	ND	ND	ND	1000	μg/kg
2, 3, 4, 6 Tetrachlorophenol	ND	ND	ND	ND	ND	1000	μg/kg
Diethylphthalate	ND	ND	ND	ND	ND	100	μg/kg
Fluorene	ND	ND	ND	ND	ND	100	μg/kg
4-Chlorophenyl phenylether	ND	ND	ND	ND	ND	100	μg/kg
Diphenylamine	ND	ND	ND	ND	ND	100	μg/kg
Azobenzene	ND	ND	ND	ND	ND	100	μg/kg
4-Bromophenyl phenylether	ND	ND	ND	ND	ND	100	μg/kg
Hexachlorobenzene	ND	ND	ND	ND	ND	100	$\mu g/kg$
Phenanthrene	ND	ND	ND	ND	ND	100	μg/kg
Anthracene	ND	ND	ND	ND	ND	100	μg/kg
Carbazole	ND	ND	ND	ND	ND	100	μg/kg
Di-n-butylphthate	ND	ND	ND	ND	ND	100	μg/kg
Fluoranthene	ND	ND	ND	ND	ND	100	μg/kg
Pyrene	ND	ND	ND	ND	ND	100	μg/kg
Benzyl butylphthalate	ND	ND	ND	ND	ND	100	μg/kg
Di(2-ethylhexyl) adipate	ND	ND	ND	ND	ND	100	μg/kg
Benz[a]anthracene	ND	ND	ND	ND	ND	100	μg/kg
Chrysene	ND	ND	ND	ND	ND	100	μg/kg
Di-n-octylphthalate	ND	ND	ND	ND	ND	100	μg/kg
Benzo[b]fluoranthene	ND	ND	ND	ND	ND	100	μg/kg
Benzo[k]fluoranthene	ND	ND	ND	ND	ND	100	μg/kg
Benzo[a]pyrene	ND	ND	ND	ND	ND	100	μg/kg
Indeno[1, 2, 3-cd]pyrene	ND	ND	ND	ND	ND	100	μg/kg
Dibenz[a, h]anthracene	ND	ND	ND	ND	ND	100	μg/kg
Benzo[g, h, i]perylene	ND	ND	ND	ND	ND	100	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limits	
2-Fluorophenol	52%	61%	58%	61%	62%	30 - 120	
Phenol-D5	34%	41%	38%	39%	36%	30 - 120	
Nitrobenzene-D ₅	45%	53%	45%	41%	40%	30 - 120	
2-Fluorobiphenyl	52%	61%	63%	62%	61%	30 - 120	
p-Terphenyl D14	70%	68%	62%	65%	77%	30 - 120	
P respicallyDi4						30 120	
	8270F-	8270F-	8270F-	8270F-	8270F-		
Batch:	102919-1	102919-1	102919-1	102919-1	102919-1		
Prepared:	10/29/2019	10/29/2019	10/29/2019	10/29/2019	10/29/2019		
Analyzed:	10/30/2019	10/30/2019	10/30/2019	10/30/2019	10/30/2019		

ND= Value less than reporting limit

⁺⁺ m-cresol, p-cresol reported as a combined result

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 562-646-1611 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants 11/1/2019 Report date: **Client Address:** 717 S. Myrtle Ave. Jones Ref. No.: ST-14526

Monrovia, CA 91016 Client Ref. No.:

Michael Van Fleet **Date Sampled:** 10/23-24/2019 Attn:

> **Date Received:** 10/24/2019

18-41-296-02

BCHD 10/30/2019 **Project: Date Analyzed: Project Address:**

520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

Sample ID:	Method Blank		
Jones ID:	8270F-102919- MB1	Reporting Limit	<u>Units</u>
Analytes:			
1,4 Dioxane	ND	200	μg/kg
Phenol	ND	100	μg/kg
Bis(2-chloroethyl) ether	ND	100	μg/kg
2-Chlorophenol	ND	100	μg/kg
1, 3 Dichlorobenzene	ND	100	μg/kg
1, 4 Dichlorobenzene	ND	100	μg/kg
1, 2 Dichlorobenzene	ND	100	μg/kg
o-Cresol	ND	100	μg/kg
m, p-Cresols++	ND	100	μg/kg
Hexachloroethane	ND	100	μg/kg
Nitrobenzene	ND	100	μg/kg
Isophorone	ND	100	μg/kg
Bis(2-chloroethoxy) methane	ND	100	μg/kg
2, 4 dichlorophenol	ND	100	μg/kg
1, 2, 4 Trichlorobenzene	ND	100	μg/kg
Naphthalene	ND	100	μg/kg
4-Chloroanaline	ND	100	μg/kg
Hexachlorobutadiene	ND	100	μg/kg
4-Chloro-3-methylphenol	ND	100	μg/kg
2-Methylnaphthalene	ND	100	μg/kg
1-Methylnaphthalene	ND	100	μg/kg
Hexachlorocyclpentadiene	ND	100	μg/kg
2, 4, 6 Trichlorophenol	ND	100	μg/kg
2, 4, 5 Trichlorophenol	ND	100	μg/kg
2-Chloronaphthalene	ND	100	μg/kg
2-Nitroanaline	ND	100	μg/kg
Dimethylphthalate	ND	100	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Sample ID:	Method Blank		
Jones ID:	8270F-102919- MB1	Reporting Limit U	Jnits_
Analytes:			_
Acenaphthalene	ND	100 μι	g/kg
3-Nitroanaline	ND		g/kg
Acenapthene	ND		g/kg
2, 4 Dinitrotoluene	ND		g/kg
Dibenzofuran	ND		g/kg
2, 3, 4, 5 Tetrachlorophenol	ND		g/kg
2, 3, 4, 6 Tetrachlorophenol	ND		g/kg
Diethylphthalate	ND		g/kg
Fluorene	ND		g/kg
4-Chlorophenyl phenylether	ND		g/kg
Diphenylamine	ND		g/kg
Azobenzene	ND		g/kg
4-Bromophenyl phenylether	ND		g/kg
Hexachlorobenzene	ND		g/kg
Phenanthrene	ND		g/kg
Anthracene	ND		g/kg
Carbazole	ND		g/kg
Di-n-butylphthate	ND		g/kg
Fluoranthene	ND		g/kg
Pyrene	ND		g/kg
Benzyl butylphthalate	ND		g/kg
Di(2-ethylhexyl) adipate	ND		g/kg
Benz[a]anthracene	ND		g/kg
Chrysene	ND		g/kg
Di-n-octylphthalate	ND		g/kg
Benzo[b]fluoranthene	ND		g/kg
Benzo[k]fluoranthene	ND		g/kg
Benzo[a]pyrene	ND		g/kg
Indeno[1, 2, 3-cd]pyrene	ND		g/kg
Dibenz[a, h]anthracene	ND		g/kg
Benzo[g, h, i]perylene	ND		g/kg
Dilution Factor	1		
Surrogate Recoveries:		QC Limits	
2-Fluorophenol	65%	30 - 120	
Phenol-D5	39%	30 - 120	
Nitrobenzene-D ₅	53%	30 - 120	
2-Fluorobiphenyl	64%	30 - 120	
p-Terphenyl_D14	78%	30 - 120	
	8270F-		
Batch:	102919-1		
Prepared:	10/29/2019		
Analyzed:	10/30/2019		

ND= Value less than reporting limit

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Converse Consultants	Report date:	11/1/2019
Client Address:	717 S. Myrtle Ave.	Jones Ref. No.:	ST-14526
	Monrovia, CA 91016	Client Ref. No.:	18-41-296-02
Attn:	Michael Van Fleet	Date Sampled:	10/23-24/2019
		Date Received:	10/24/2019
Project:	BCHD	Date Analyzed:	10/30/2019
Project Address:	520 N. Prospect Ave,	Physical State:	Soil
	Redondo Beach, CA		

EPA 8270C by 3546 – Semivolatile Organics by GC/MS

Sample Spiked:	CLEA	N SOIL			
Jones ID:	8270F-102919-LCS1	8270F-102919-LCSD1			
	LCS	LCSD		Acceptable	% Recovery
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	RPD limit	Limits
Phenol	70%	56%	22.9%	35%	26 - 90
2-Chlorophenol	67%	57%	16.7%	50%	25 - 102
1,4-Dichlorobenzene	64%	54%	17.9%	50%	15 - 90
1,2,4-Trichlorobenzene	53%	60%	11.3%	50%	15 - 90
4-Chloro-3-methylphenol	63%	53%	17.6%	33%	26 - 103
Acenaphthene	84%	69%	19.3%	33%	31 - 137
2, 4-Dinitrotoluene	81%	59%	30.8%	47%	28 - 89
Pyrene	83%	70%	16.2%	36%	35 - 142
Surrogate Recovery:					
2-Fluorophenol	70%	64%			30 - 120
Phenol-D5	60%	54%			30 - 120
Nitrobenzene-D ₅	55%	57%			30 - 120
2-Fluorobiphenyl	81%	66%			30 - 120
p-Terphenyl-D ₁₄	76%	73%			30 - 120

8270F-102919-1 **Batch:**

LCS = Laboratory Control Sample LCSD = Laboratory Control Sample Duplicate MS = Matrix Spike

Attn:

714-449-9937 11007 FOREST PLACE 562-646-1611 805-399-0060 SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report date: 11/1/2019 717 S. Myrtle Ave. **Client Address:** Jones Ref. No.: ST-14526 18-41-296-02

Monrovia, CA 91016 Client Ref. No.:

> **Date Sampled:** 10/23-24/2019 **Date Received:** 10/24/2019

Project: BCHD Date Analyzed: 10/30/2019

Project Address: 520 N. Prospect Ave, **Physical State:** Soil

Redondo Beach, CA

Michael Van Fleet

EPA 8270C by 3546 - Semivolatile Organics by GC/MS

Result	Expected	%Deviation	Acceptable Deviation	Pass/Fail	
8270F-1030)19-CCV1				
5.45	5.00	9%	40%	PASS	
5.35	5.00	7%	20%	PASS	
5.55	5.00	11%	20%	PASS	
5.50	5.00	10%	20%	PASS	
5.30	5.00	6%	20%	PASS	
5.07	5.00	1%	20%	PASS	
5.24	5.00	5%	20%	PASS	
5.40	5.00	8%	20%	PASS	
4.76	5.00	5%	20%	PASS	
4.92	5.00	2%	20%	PASS	
4.90	5.00	2%	20%	PASS	
5.07	5.00	1%	20%	PASS	
5.33	5.00	7%	20%	PASS	
5.67	5.00	13%	20%	PASS	
5.73	5.00	15%	20%	PASS	
4.98	5.00	0%	20%	PASS	
5.18	5.00	4%	20%	PASS	
	5.45 5.35 5.55 5.50 5.30 5.07 5.24 5.40 4.76 4.92 4.90 5.07 5.33 5.67 5.73 4.98	8270F-103019-CCV1 5.45 5.00 5.35 5.00 5.55 5.00 5.50 5.00 5.30 5.00 5.07 5.00 5.24 5.00 4.76 5.00 4.92 5.00 4.90 5.00 5.07 5.00 5.33 5.00 5.67 5.00 5.73 5.00 5.18 5.00 110% 100% 102% 117%	8270F-103019-CCV1 5.45 5.00 9% 5.35 5.00 7% 5.55 5.00 11% 5.50 5.00 10% 5.30 5.00 6% 5.07 5.00 1% 5.24 5.00 5% 5.40 5.00 8% 4.76 5.00 5% 4.92 5.00 2% 4.90 5.00 2% 5.07 5.00 1% 5.33 5.00 7% 5.67 5.00 13% 5.73 5.00 15% 4.98 5.00 0% 5.18 5.00 4%	Result Expected %Deviation Deviation 8270F-103019-CCV1 5.45 5.00 9% 40% 5.35 5.00 7% 20% 5.55 5.00 11% 20% 5.30 5.00 6% 20% 5.07 5.00 1% 20% 5.24 5.00 5% 20% 5.40 5.00 8% 20% 4.76 5.00 5% 20% 4.92 5.00 2% 20% 4.90 5.00 2% 20% 5.07 5.00 1% 20% 5.07 5.00 1% 20% 5.73 5.00 1% 20% 5.73 5.00 15% 20% 4.98 5.00 0% 20% 5.18 5.00 4% 20% 5.18 5.00 4% 20% 100% 30 - 30 - 102%	Result Expected % Deviation Pass/Fail 8270F-103019-CCV1 5.45 5.00 9% 40% PASS 5.35 5.00 7% 20% PASS 5.55 5.00 11% 20% PASS 5.50 5.00 10% 20% PASS 5.30 5.00 6% 20% PASS 5.07 5.00 1% 20% PASS 5.40 5.00 5% 20% PASS 5.40 5.00 8% 20% PASS 4.76 5.00 5% 20% PASS 4.92 5.00 2% 20% PASS 5.07 5.00 1% 20% PASS 5.33 5.00 7% 20% PASS 5.67 5.00 13% 20% PASS 5.73 5.00 15% 20% PASS 5.18 5.00 4% 20% <t< td=""></t<>

11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9937

Chain-of-Custody Record

provided herein is correct and accurate.	Time	Date	-		-		Company	Time			
constitutes acknowledgement that the above analyses have been reqested, and the information		Printed Name			gnature)	Received By Laboratory (Signature)	Received By		7	Pri	
Client signature on this Chain of Custody form	3	10/24/2019).es				Company ンEC	Time 13:15	Date	Date	
Total Number of Containers	Horale	Kevin				Signature)	Received By (Signature)	Jagner	Printed Name	N Prin	
		×	×	×	4	1A5	4	- 14526-10) 51	9:30	4
14070		_				1RS		1-14526-09	ST	8:51	
[foco				+		1/6		80-92941-	-15	\$:49	
			×	×		TENT		19526-07	51-	(his	
		×	×	X		2 ENC		14526-06	51-	8:45	-
			×	×		1 AS 2610		14526-05	51-	7.28	+
HOCO				\vdash		_		-14526-04	75	776	
HOLD						1		14526-03	-15	45C	+
How					-	1 45	-	-14526-02	-	722	- 3
		×	×	×	S	7 Enc.	the	14526-01	-TS	730	10-22-19
Notes & Special Instructions		814	601		Soil (S),		Preservative	Laboratory Sample ID		Sample Collection Time	Date
ber of Containers		11A 11A 70C	08 74714	60B 15 M	le Matrix: Sludge (SL), Aqueous (A	I. Mataka	P - Plastic SOBI - Sodium Bisulfate MeOH - Methanol HCI - Hydrochloric Acid HNO3 - Nitric Acid O - Other (See Notes)		Wagner	Spencer	Sampler
Sample Condition as Recieved: Chilled					A), Free Product (FP)	6	AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve G - Glass AB - Amber Bottle	AS - Aceta SS - Stain BS - Brass G - Glass AB - Amb	6m		CA CA STRATS
0 to	equested	Analysis Requested				ervative	Sample Container / Preservative Abbreviations	Sample			
Page	*Global ID		20.0	72 Hours	□ Rush 72 Normal	02	296	Client Project #			ITANIS
Jones Project #	EDD Surcharge	sted:	□ Immediate Attention □ Rush 24 Hours □ Rush 48 Hours	diate Atten 24 Hours	urn Around Requirements of Immediate Attention Rush 24 Hours Rush 48 Hours		23-19	Date 10-23-			ţ
LAB USE ONLY	Part Outland	1	1				ALL AL TOUCH ALL ALL ALL ALL ALL ALL ALL ALL ALL AL				ENVIRONMENTAL

HOTELOW I DOUBLE OF THE OWNER	Time		Date						Company	Time		Date:		Company	S
constitutes acknowledgement that the above analyses have been reqested, and the information accurate.		Printed Name	Prin			iture)	ry (Signa	Laborato	Received By Laboratory (Signature)		Printed Name	Přin		Relinquished By (Signature)	R
Client signature on this Chain of Custody form	1315	10/24/2019	Date						Company	13:15	4/19	Date 10/2 Y		Company	S
Total Number of Containers	Hearles	CVIT	_					Lignatur	Received By (Signature)	Skyns	Printed Name	V Prior		Relinquished By (Signature)	Re
HOLD						4		135	4	- 14526-20	51	10:54	4	-10	
				×	×	×	7	784		-14526-19	15	10:57		. 'S	
		×	×	×	×	×	7	1000		81-92541-	75	10:55		BU5-2	
A101							0	- A		14526-17	51-	10-16		- 15	
Holb					T		~	185		14521-16	51-	10:14		- 10	
				×	×	×	r	1 FW		-14526-15	ST.	10:12		1	
		×	×	×	×	~	~	7.EX		-14526-14	51-	10:10		R- 178	
14017								IAS		51-14526-13	51.	9:36		-15	
								SVI	-	14626-12	51-	4:34	-	0) ~	
2 of 96				×	×	×	5	7 Brc	iapaks	ST-14526-11	57-1	9:32	10-23-19	8-818	
Notes & Special Instructions		827	808	6010	8015	Soil (S), S	Sample	Sample Container	Preservative	Laboratory Sample ID		Sample Collection Time	Date	Sample ID	
er of Contai				B / 74711	ч		Matrix:		HCI - Hydrochloric Acid HNO3 - Nitric Acid O - Other (See Notes)	HCI - H; HNO3 - O - Oth	Wagner	S. W	Sampler	Report To MUF	Rep
ners				1		ueous (A		Ö	P - Plastic SOBI - Sodium Bisulfate MeOH - Methanol	P - Plastic SOBI - Soo				626 930-1200	hone
Sample Condition as recieved. Chilled), Free Product (I		9646	AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve G - Glass AB - Amber Bottle	AS - Aceta SS - Stain BS - Brass G - Glass AB - Amb			h CA	all Redonds Beach	mail
Constitution of Goldstoner	uested	Analysis Requested	Ana	_		FP)	-	eservative	Sample Container / Preservative Abbreviations	Sample			+ Auc	roject Address 520 N. Prospect	roj
12 #	Report Options EDD EDF* - 10% Surcharge *Global ID		este	Requests	iate Atter 4 Hours 8 Hours 2 Hours	Turn Around Requested: Immediate Attention Rush 24 Hours Rush 48 Hours Rush 72 Hours	▼ □□□□ ፫		te 5 123 [19 ent Project #	Date 10 [23][Q Client Project #			15	roject Name BCHD	lient
LAB USE ONLY									(714) 449-9937 Fax (714) 449-9685 www.jonesenv.com	(71) Fax (71) www.jc	Z C		ZMEZ	ENVIRONMENTAL	
Chain-of-Custody Record	f-Custo	n-o	<u> </u>	7	0				11007 Forest Pl. prings, CA 90670	11007 Forest Pl. Santa Fe Springs, CA 90670		T	Z		

11007 Forest Place Santa Fe Springs, CA 90670 (714) 449-9937 (562) 646-1611 www.jonesenv.com

Chain-of-Custody Record

□EDD □EDF	3	-					Company		Time			Company
above under the Terms and Conditions set forth on the back hereof.	Date	1 5				Received by Laboratory (signature)	Received by Lab		Date			Relinquished by (signature)
this Chain of Custody form constitutes authorization to perform the analyses specified	1315	7 - =					SEL		Time			Converse
Total Number of Containers	10/27/11	- D				nature)	2 Received by (signature)		Date			Relinquished by (signature)
	×	×	×	X	4	57-14526.30		13:20	Z			BC8-2
Hacp						55-14526-25	10	12:51				-15
1400						87-14526-28	S	12:49				1 10
		×	×	×		57-14526-27		12:47				5
	× ×	×	×	×		21-14526-26		12:45				3(7 - 2
ATA						51-14526-26	5	11:51				- 15
H010						55-14526-24	5	II:49				- 10
93 of 9		×	X	×		57-14526-23	5	11:47				2.
6	×	×	X	X	-	55-14626-22	. N	11:45				BC6-2
HOLD					N	57-14526-21		11:01	10/25/19			SI-578
Remarks/Special Instructions	Maga	6010	8015	82	Sampi	Sample Number	Sample Analysis Time	Sample Collection Time	Date	Purge Volume	Purge Number	Sample ID
Sealed lyes lno	SIA SI	Blan	OB	S), Sludge	le Ma		200	☐ Mobile Lab				Project Contact
as Received:	4		Age	(SU)		☐ T, T-DrA ☐ Helium	1 72	24 48		CA	-	Redundo Beaun
L		\	leous (A)	\		e <u>o</u>	, c	Turn Around Requested: Immediate Attention		٤	Put A	S20 N. Prospect
Page 3 of 6		Gas (Soil	Soil Gas (~ \ N	6-02	3-41-296-02				Project Name BCHD
	Analysis Requested	SG)	OP	□7P □10P	⊒3P □ 7	Purge Number: ☐ 1P ☐ 3P		10/23/19				Client
JEL Project #					ico	SOIL GAS		Date	_			

11007 Forest Place Santa Fe Springs, CA 90670 (714) 449-9937 (562) 646-1611 www.jonesenv.com

Chain-of-Custody Record

□EDD □EDF	ā					Company		Time			Company
above under the Terms and Conditions set forth on the back hereof.	Date				Received by Laboratory (signature)	4 Received by L		Date			Relinquished by (signature)
The delivery of samples and the signature on this Chain of Custody form constitutes authorization to perform the analyses specified	1315					JEL	13:15	Timi			Company
Total Number of Containers	10/19/19				signature)	2 Received by (signature)	Date 10/24/19	Date			Relinquished by (signature)
HOLD				4	51-14626-40		8:32	_			- 10
		×	~		SE-14526-39		8:28				- 5
	X	×	~		86-125h1-15		8:24				BC10 - 2
HOLD					57-14526-37		7:36				51-
HOLD					55-14526-26		7:34				-10
		×	×		57-14526.35		7:32	_			,5
	×	X	×		5T-14526-34		7:30	10/24/19			BC9-2
94 of 9					51-14626-33		13:26	+			- 15
				-	57-14526-32		13:24	_			-10
		×	×	N	55-14526-31		13:22	6 23 19			BC8-5
Remarks/Special Instructions	Maghe	Sample Soil (S Soil (S Soil (S)	3011(8	Sample	Laboratory Sample Number	Sample Analysis Time	Sample Collection Time	Date	Purge Volume	Purge Number	Sample ID
	\$ 14 14 14 14 14 14 14 14 14 14 14 14 14 1	SKY	Sludge	2		ab	Mobile Lab				Project Contact MVF
Sample Condition as Received: Chilled yes no	714	- Agu	(SU)		Helium	48 🔲 72	Rush:			ach	Redondo Beach
		90US (A), S	\		ropanol	Around Requested: Immediate Attention	Turn Around Requested: Immediate Attention		8	speck A	Project Address 520 N. Project Ave
Page 4 of C		Soil Gas (S		66711111	Shut in Test Y / N Tracer:	96-02	18-41-296-02				Project Name BCHD
`	Analysis Requested	유 (G)	□7P □10P	3P 🗆	per: DIP D	NI PC	10/23 - 10/24/19				Client
JEL Project #				n	SOII GAS		Table 1				

AMERICAN ENVIRONMENTAL TESTING LABORATORY

2834 NORTH NAOMI ST. BURBANK, CALIFORNIA 91504 DHS # 1541 LACSD# 10181 TEL (888) 288-AETL (818) 845-8200 FAX (818) 845-8840 www.aetlab.com

CHAIN OF CUSTODY RECORD

115899

THINA ROUND TIME SAMPLES NOTORY PROPERTY NAME PROPERTY NAME SAMPLES NOTORY PROPERTY NAME PROPERTY	CONSULTANTS PROJECT MANAGER MV ARTILLOB NO.	e: Time:	Time: Date:	Date:	Time:		Date:	PECIFY)	GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY)	00			7
CONSULTANT CONTAINER PRESENTED CONTAINER CONTAINER PRESENTED CONTAINER PRESENTED CONTAINER CON	CONSULTANTS PROJECT MANAGER MAY ANALYSIS REQUESTED	ted Name:	Print	Printed Name:		lame:	Printed I						NORM.
CONTAINER PROJECT 12-11-246 -02 ANALYSIS REQUESTED	CONSULTANT PROJECT MANAGER MVF ANALYSIS REQUESTED	nature:	Sign	Signature:		6:	Signatur		COPY	-	- CAME DAY		
CONSULTANTS PROJECT 10 240 240	CONSUNTAINER PROJECT MANAGER MVF ANALYSIS REQUESTED	TORY:		RECEIVED BY:	.*	VED BY:		RABLE REQ	A DELIVER	DAT	DTIME	RN AROUN	IUI
CONTAINER PROJECT 13-Y1-2A6 -02 A X X X X X X X X X	ANALYSIS REQUESTED NO			10/24/15	13:15	24/19	Date:	Y/N		SAMPLES	N/A		RECEIVED IN G
CONSULTANS	CONSULTANT PROJECT MANAGER MAY ARTILLOB NO.	d Name:			Lanes	Sience	Printed I	/NA	NTACT Y/N	SAMPLES			CUSTODY SEA
CONSULTANDS PROJECT 12-00 ANALYSIS REQUESTED	CONSULTAND PROJECT MANAGER MY ARTHUDO NO	nature:	Sign	Signature		りく	Signatur	/N/NA		PROPERLY	NERS	R OF CONTAIL	TOTAL NUMBE
ANALYSIS REQUESTED ANALYSIS REQUESTED	ARTILOB No. APPLIED ANALYSIS REQUESTED	Control of		HELINGOISHED BT.		ER:		BORATOF	DBYLA	BE FILLE	-		SA
ANALYSIS REQUESTED ANALYSIS REQUESTED	ATTIJOB NO. CONSULTANTS PROJECT MANAGER MAJE		-	×	XXX)	-	4	W:17	-	260		15
ANALYSIS REQUESTED ANALYSIS REQUESTED	ATTIJOB NO. CONSULTANTS PROJECT MANAGER MAJE			×	×	X	a cur	*	11:15	-	100		" BC14-
ANALYSIS REQUESTED PROJECT # 18-41-216-62 ANALYSIS REQUESTED	ANALYSIS REQUESTED ANALYSIS REQUESTED		1201				IAS		10:46				13
CONSULTANTS PROJECT MATERIX MA	APILJOB NO. PROJECT MANAGER MYF APILJOB NO.	0	17061				135		hh:0				12
CORSULTANTS PROVENTIAL PHONE P	CONSULTANTS PROJECT MANAGER MYF AETL JOB NO.			×	-		128UL		10:42		19- 92941-		(
Consultants	CONSULTANTS PROJECT MANAGER MYP AFTLYOB NO.			×	X	~	1000		10:40		-14M1-50		1000
Consultants	Consultants	0	1401				i A		0:16		64-9-1941-5		0
Consultants	Consultants	0	197				(4)		10:14		8h. 126H-J		0
Consultants	Consultants			×	×		Senc		10:12		2h- 908hl-	5 51	7
Consultants	Consultants PROJECT MANAGER MATE PHONE PHONE FAX 626 930 1260 ANALYSIS REQUESTED ANALYSIS REQUESTED	95 c		×	X		1 1500		0:10		-14526-46	2 55.	5
My rtle Avenue PHONE FAX 626 930 1260 My rtle Avenue FAX 626 930 1260 ANALYSIS REQUESTED ANALYSIS REQUE	Consultants PROJECT MANAGER MJF ANALYSIS REQUESTED ANALYSIS REQ		F	+			IAS		oh:b			- 1	5
Consultants PROJECT MANAGER MAY P ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 18-41-246-02 ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED OF ANALYSIS REQUESTED ANALYSIS REQUESTED OF ANALYSIS REQUESTED ANALYSIS REQUESTED OF ANALYS	Consultants PROJECT MANAGER MJF ANALYSIS REQUESTED ANALYSIS REQ	D	FOT.				3		4:38		44-7641		-
My the Annue France My F My the Annue Frax 626 930 1260 MALYSIS REQUESTED ANALYSIS REQUESTED	Consultants PROJECT MANAGER MJF APTL JOB NO. ANALYSIS REQUESTED PHONE FAX 626 930 1260 ANALYSIS REQUESTED PROJECT # 18-41-246-62 Redondo Beach Redondo Beach APTL JOB NO. ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 18-41-246-62 ANALYSIS REQUESTED			×	×		230		98:36		44526-43	5 57	1
Consultants PROJECT MANAGER MAJE PHONE FAX 626 930 1260 ANALYSIS REQUESTED PROJECT # 18-41-246-62 ANALYSIS REQUESTED	Consultants PROJECT MANAGER MAJE PHONE FAX 626 930 1260 PROJECT# 18-41-276-02 ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT# 18-41-276-02 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT# 18-41-276-02 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT# 18-41-276-02 ANALYSIS REQUESTED ANALYSIS REQUES			×	(XX)	-	2 AVC		4:34	-	-14676-42	2 5%	B(11 -
Consultants PHONE PHONE FAX 626 930 1260 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 18-41-296-62 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 18-41-296-62 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 18-41-296-62 ANALYSIS REQUESTED ANALYSIS REQUESTED Redordo Beach NUMBER/SIZE PRES. P	Consultants PROJECT MANAGER MUF PHONE FAX 626 930 1260 ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 18-41-276-622 ANALYSIS REQUESTED	5	To			icepada	1 jar	Suic	8:36	10 24 19		51	BC10-1
My rtle Avenue PO# ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT # 13-41-296-62 ANALYSIS REQUESTED	Consultants PROJECT MANAGER MUF ANALYSIS REQUESTED PROJECT# 13-41-26-62 Redondo Beach PROJECT # 13-41-26-62 Redondo Beach Redondo Beach PROJECT # 13-41-26-62 Redondo Beach Re			8	601		CONTAINER NUMBER/SIZE	MATRIX	TIME	DATE	LAB ID	ō	SAMPLE
My rtle Avenue PROJECT # 18-41-226 -62 ANALYSIS REQUESTED PROJECT # 18-41-226 -62 ANALYSIS REQUESTED PROJECT # 18-41-226 -62 ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED	Consultants PROJECT MANAGER MJF PHONE PHONE FAX 626 130 1260 PROJECT# 18-41-276-62 ANALYSIS REQUESTED PROJECT# 18-41-276-62 ANALYSIS REQUESTED PROJECT# 18-41-276-62 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT# 18-41-276-62 ANALYSIS REQUESTED ANALYSIS REQUESTED PROJECT# 18-41-276-62			141	115					seach			ADDRESS
My rtle Avenue PROJECT # 18-41-226 -62 ANALYSIS REQUESTED PROJECT # 18-41-226 -62	Consultants PROJECT MANAGER MJF PHONE PAX 626 130 1260 ANALYSIS REQUESTED PROJECT # 18-41-266-62 ANALYSIS REQUESTED PROJECT # 18-41-266-62			/ \t	m 74	D		PO #	4		2	52	SITE NAME
Consultants PROJECT # MARKAGEN MAP ARILJOB NO. ANALYSIS REQUESTED PROJECT # ANALYSIS REQUESTED	CONSULTANIS PROJECT MANAGER MUF PHONE PHONE FAX 626 930 1260 PROJECT # DETL JOB NO. ANALYSIS REQUESTED PROJECT # DETL JOB NO.)T-14526			7/A	10	_				+0		PROJECT NAME
Consultants PHONE PHONE FAX 626 430 1260 ANALYSIS REQUESTED TEST INSTRUCTIONS & CO.	CONSULTANTS PROJECT MANAGER MUF PHONE PHONE FAX 626 430 1260 ANALYSIS REQUESTED						#	PROJEC		Series Control		0111	DBO IECT NAME
Conc. I tant	CONCINTANTO PROJECT MANAGER MYF AETL JOB No. Page 5	INSTRUCTIONS & COMMENT		IS REQUESTED	ANALYS	200		PHONE		an la	1	e	COMPANY ADDR
		0			EILJUB NO.	D		JECT MANAGE	PHO		Consultants		COMPANY

AMERICAN ENVIRONMENTAL TESTING LABORATORY

2834 NORTH NAOMI ST. BURBANK, CALIFORNIA 91504 DHS # 1541 LACSD# 10181 TEL (888) 288-AETL (818) 845-8200 FAX (818) 845-8840 www.aetlab.com

CHAIN OF CUSTODY RECORD

115898

Hold Hold 96 [Hold 96 [H	1 me: 1715	8081 A 814 A 814 A 814 A RECEIVED BY: Signature: Printed Name: Printed	1. RELINOUISHE Printed Name: Signature: Printed Name: 82608 X X 8015M A 6010B/7471 X 8081A 8141A 8270C	The state of the s	I AS I AS I AS	MATRIX SOIL SOIL N/NA NA ABLE REC	Beach DATE TIME TIME A 11:21 A 11:			SITE NAME AND AND AND AND AND AND AND AND SAMPLE ID ST-1462 -15 ST-1462 -15 ST-146 -5 -146 -15 ST-146 -15 ST-146 -17 ST-146 -18 ST-146 -19 S
EST INSTRUCTIONS & COMMENTS			IA.	700	626 930-1200	PROJECT #		trenve	ite	PROJECT NAME 3
TEST INSTRUCTIONS & COMMENTS		ANALYSIS REQUESTED	ANALYS	200	656 930-	PHONE				COMPANY ADDRESS
Page 6 of 6			2000 140.)	MUF				37.1	COMPANY

01 November 2019

Colby Wakeman
Jones Environmental
11007 Forest Place
Santa Fe Springs, CA 90670

RE: BCHD

Enclosed are the results of analyses for samples received by the laboratory on 10/25/19 14:27. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeff Lee

Project Manager

Jones Environmental Project: BCHD 11007 Forest Place Project Number: [none]

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BC1-2	T193739-01	Soil	10/23/19 07:30	10/25/19 14:27
BC2-2	T193739-02	Soil	10/23/19 08:45	10/25/19 14:27
BC3-2	T193739-03	Soil	10/23/19 09:30	10/25/19 14:27
BC4-2	T193739-04	Soil	10/23/19 10:10	10/25/19 14:27
BC5-2	T193739-05	Soil	10/23/19 10:55	10/25/19 14:27
BC6-2	T193739-06	Soil	10/23/19 11:45	10/25/19 14:27
BC7-2	T193739-07	Soil	10/23/19 12:45	10/25/19 14:27
BC8-2	T193739-08	Soil	10/23/19 13:20	10/25/19 14:27
BC9-2	T193739-09	Soil	10/24/19 07:30	10/25/19 14:27
BC10-2	T193739-10	Soil	10/24/19 08:24	10/25/19 14:27
BC11-2	T193739-11	Soil	10/24/19 09:34	10/25/19 14:27
BC12-2	T193739-12	Soil	10/24/19 10:10	10/25/19 14:27
BC13-2	T193739-13	Soil	10/24/19 10:40	10/25/19 14:27
BC14-2	T193739-14	Soil	10/24/19 11:15	10/25/19 14:27
BC15-2	T193739-15	Soil	10/24/19 11:50	10/25/19 14:27

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 1 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

DETECTIONS SUMMARY

Sample ID: BC1-2 Laboratory ID: T193739-01

No Results Detected

Sample ID: BC2-2 Laboratory ID: T193739-02

No Results Detected

Sample ID: BC3-2 Laboratory ID: T193739-03

No Results Detected

Sample ID: BC4-2 Laboratory ID: T193739-04

No Results Detected

Sample ID: BC5-2 Laboratory ID: T193739-05

No Results Detected

Sample ID: BC6-2 Laboratory ID: T193739-06

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 2 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

Sample ID: BC7-2 Laboratory ID: T193739-07

No Results Detected

Sample ID: BC8-2 Laboratory ID: T193739-08

No Results Detected

Sample ID: BC9-2 Laboratory ID: T193739-09

No Results Detected

 Sample ID:
 BC10-2
 Laboratory ID:
 T193739-10

No Results Detected

Sample ID: BC11-2 Laboratory ID: T193739-11

No Results Detected

Sample ID: BC12-2 Laboratory ID: T193739-12

No Results Detected

Sample ID: BC13-2 Laboratory ID: T193739-13

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 3 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

Sample ID: BC14-2 Laboratory ID: T193739-14

No Results Detected

Sample ID: BC15-2 Laboratory ID: T193739-15

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 4 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC1-2 T193739-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorio	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	10/31/19	8141a	
Mevinphos	ND	0.0050	"	"	**	**	n .	"	
Demeton-s	ND	0.010	"	11	17	11	II .	Ħ	
Ethoprophos	ND	0.0050	"	"	11	**	n	**	
Phorate	ND	0.010	"	"	11	**	n	**	
Naled	ND	0.0050	"	"	17	**	n .	n	
Sulfotep	ND	0.010	"	**	**	**	n .	Ħ	
Diazinon	ND	0.0050	"	"	**	Ħ	n .	**	
Disulfoton	ND	0.0050	"	11	Ħ	Ħ	n	**	
Demeton-o	ND	0.010	"	"	**	**	II .	Ħ	
Dimethoate	ND	0.0050	"	**	**	**	II .	Ħ	
Ronnel	ND	0.010	"	**	**	**	"	Ħ	
Merphos	ND	0.010	"	**	**	**	"	Ħ	
Chlorpyrifos	ND	0.0050	"	**	**	Ħ	"	Ħ	
Fenthion	ND	0.0050	"	**	**	**	n .	Ħ	
Trichloronate	ND	0.0050	"	**	11	**	II .	Ħ	
Methyl parathion	ND	0.0050	"	**	17	11	II .	Ħ	
Malathion	ND	0.010	"	"	Ħ	11	п	u	
Tokuthion (Prothiofos)	ND	0.0050	"	11	17	11	II .	Ħ	
Parathion	ND	0.0050	"	11	11	11	II .	Ħ	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	11	11	"	II .	u	
Bolstar	ND	0.0050	"	11	**	**	II .	u	
Fensulfothion	ND	0.0050	"	11	**	**	II .	n	
EPN	ND	0.0050	"	"	**	"	"	**	
Azinphos methyl	ND	0.010	"	"	**	"	"	"	
Coumaphos	ND	0.0050	"	**	**	**	"	**	
Surrogate: Tributylphosphate		97.6 %	40-1	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 5 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

BC2-2 T193739-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	10/31/19	8141a	
Mevinphos	ND	0.0050	"	"	"	**	H.	**	
Demeton-s	ND	0.010	"	"	**	**	II.	'n	
Ethoprophos	ND	0.0050	"	**	**	**	H.	**	
Phorate	ND	0.010	"	"	**	**	II .	"	
Naled	ND	0.0050	"	"	**	**	H .	"	
Sulfotep	ND	0.010	"	**	**	**	H	"	
Diazinon	ND	0.0050	"	**	**	**	H	"	
Disulfoton	ND	0.0050	"	**	**	**	H	"	
Demeton-o	ND	0.010	"	**	**	**	H	"	
Dimethoate	ND	0.0050	"	**	**	**	H	"	
Ronnel	ND	0.010	"	**	**	**	W	"	
Merphos	ND	0.010	"	11	**	**	W	"	
Chlorpyrifos	ND	0.0050	"	"	**	**	II.	TT .	
Fenthion	ND	0.0050	"	"	"	**	H.	"	
Trichloronate	ND	0.0050	"	11	**	**	n	"	
Methyl parathion	ND	0.0050	"	**	**	**	W	"	
Malathion	ND	0.010	"	**	**	ti .	H.	"	
Tokuthion (Prothiofos)	ND	0.0050	"	**	u	**	H	"	
Parathion	ND	0.0050	"	**	**	**	H	n	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	**	**	**	H.	T T	
Bolstar	ND	0.0050	"	**	**	**	H.	u u	
Fensulfothion	ND	0.0050	"	"	Ħ	**	н	n	
EPN	ND	0.0050	"	"	Ħ	**	н	n	
Azinphos methyl	ND	0.010	"	"	Ħ	**	11	n	
Coumaphos	ND	0.0050	"	"	**	**	H.	"	
Surrogate: Tributylphosphate		105 %	40	125	"	"	"	n .	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 6 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

BC3-2 T193739-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorio	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	10/31/19	8141a	
Mevinphos	ND	0.0050	"	"	17	11	H .	"	
Demeton-s	ND	0.010	"	"	"	Ħ	W .	"	
Ethoprophos	ND	0.0050	"	"	"	"	"	"	
Phorate	ND	0.010	"	"	"	"	"	"	
Naled	ND	0.0050	"	"	**	**	"	"	
Sulfotep	ND	0.010	"	**	**	"	"	"	
Diazinon	ND	0.0050	**	**	"	**	"	"	
Disulfoton	ND	0.0050	**	**	**	**	"	"	
Demeton-o	ND	0.010	**	**	**	**	"	"	
Dimethoate	ND	0.0050	**	**	**	11	If	"	
Ronnel	ND	0.010	**	"	17	17	II	11	
Merphos	ND	0.010	"	"	17	17	Ħ	"	
Chlorpyrifos	ND	0.0050	**	"	17	17	II	11	
Fenthion	ND	0.0050	"	"	17	17	Ħ	"	
Trichloronate	ND	0.0050	**	"	"	11	II	11	
Methyl parathion	ND	0.0050	**	"	"	11	II	11	
Malathion	ND	0.010	**	"	"	11	II	11	
Tokuthion (Prothiofos)	ND	0.0050	**	"	n	Ħ	II	Ħ	
Parathion	ND	0.0050	**	"	n	Ħ	II	Ħ	
Stirophos (Tetrachlorvinphos)	ND	0.0050	**	"	n	Ħ	H .	Ħ	
Bolstar	ND	0.0050	**	"	n	Ħ	11	tt .	
Fensulfothion	ND	0.0050	**	"	n	Ħ	**	tt .	
EPN	ND	0.0050	**	"	**	**	"	"	
Azinphos methyl	ND	0.010	**	"	"	**	"	"	
Coumaphos	ND	0.0050	**	"	"	**	"	"	
Surrogate: Tributylphosphate		103 %	40-1	125	"	n .	"	n .	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 7 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC4-2 T193739-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorio	es, Inc.					
Organophosphorus Pesticides by EPA Meth	od 8141A								
Dichlorvos	ND	0.0062	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0062	**	"	**	Ħ	n .	"	
Demeton-s	ND	0.012	**	"	**	Ħ	n	"	
Ethoprophos	ND	0.0062	**	"	**	Ħ	n	**	
Phorate	ND	0.012	**	"	**	Ħ	n .	**	
Naled	ND	0.0062	**	"	**	Ħ	n .	**	
Sulfotep	ND	0.012	**	"	**	Ħ	ıı	Ħ	
Diazinon	ND	0.0062	**	**	**	Ħ	n .	**	
Disulfoton	ND	0.0062	**	**	**	**	ıı	**	
Demeton-o	ND	0.012	"	**	**	**	n .	**	
Dimethoate	ND	0.0062	**	**	**	**	II .	**	
Ronnel	ND	0.012	"	"	17	17	II	Ħ	
Merphos	ND	0.012	"	"	***	17	m .	**	
Chlorpyrifos	ND	0.0062	"	"	17	17	II	Ħ	
Fenthion	ND	0.0062	"	"	11	11	11	Ħ	
Trichloronate	ND	0.0062	"	"	**	"	11	Ħ	
Methyl parathion	ND	0.0062	"	**	**	"	11	Ħ	
Malathion	ND	0.012	m .	**	**	Ħ	II	Ħ	
Tokuthion (Prothiofos)	ND	0.0062	m .	**	**	Ħ	II	Ħ	
Parathion	ND	0.0062	n	**	**	Ħ	II	Ħ	
Stirophos (Tetrachlorvinphos)	ND	0.0062	Ħ	**	**	Ħ	II	**	
Bolstar	ND	0.0062	Ħ	**	**	Ħ	II	**	
Fensulfothion	ND	0.0062	n	**	**	Ħ	II.	**	
EPN	ND	0.0062	"	11	**	**	II	**	
Azinphos methyl	ND	0.012	**	**	**	**	"	**	
Coumaphos	ND	0.0062	**	11	**	**	"	"	
Surrogate: Tributylphosphate		113 %	40-1	25	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 8 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

BC5-2 T193739-05 (Soil)

Analyte Resu	Reporting lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA Method 8141A								
Dichlorvos NI	D 0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos NI	D 0.0050	"	"	"	"	II.	"	
Demeton-s NI	D 0.010	"	"	"	**	H.	**	
Ethoprophos NI	D 0.0050	"	"	"	"	II.	"	
Phorate NI	D 0.010	"	"	"	**	H	**	
Valed NI	D 0.0050	"	"	"	**	H	**	
Sulfotep NI	D 0.010	"	"	**	**	H	**	
Diazinon NI	D 0.0050	"	"	**	**	H.	**	
Disulfoton NI	D 0.0050	"	"	**	**	H.	**	
Demeton-o NI	D 0.010	"	"	**	**	H.	**	
Dimethoate NI	D 0.0050	"	n	**	Ħ	II	TT .	
Ronnel NI	D 0.010	"	"	"	**	11	17	
Merphos NI	D 0.010	"	"	11	Ħ	II	TT .	
Chlorpyrifos NI	D 0.0050	"	11	"	11	11	77	
Tenthion NI	D 0.0050	"	"	**	11	H	17	
richloronate NI	D 0.0050	"	11	"	**	11	"	
Methyl parathion NI	D 0.0050	"	11	"	**	11	**	
Malathion NI	D 0.010	"	11	"	**	11	**	
Cokuthion (Prothiofos) NI	D 0.0050	"	11	**	**	11	**	
Parathion NI	D 0.0050	**	"	**	**	11	**	
tirophos (Tetrachlorvinphos) NI	D 0.0050	**	"	**	**	11	**	
Bolstar NI	D 0.0050	**	"	**	**	11	**	
ensulfothion NI	D 0.0050	"	"	"	**	H .	"	
EPN NI	D 0.0050	"	"	**	**	"	"	
Azinphos methyl NI	D 0.010	"	"	"	**	H.	"	
Coumaphos	D 0.0050	"	"	"	**	"	"	
urrogate: Tributylphosphate	108 %	40	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 9 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

BC6-2 T193739-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA M	1ethod 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	"	"	**	**	H.	"	
Demeton-s	ND	0.010	"	"	**	**	II.	"	
Ethoprophos	ND	0.0050	"	**	**	**	H.	"	
Phorate	ND	0.010	"	**	**	**	H	n	
Naled	ND	0.0050	"	"	**	**	H.	"	
Sulfotep	ND	0.010	"	**	**	**	H	n	
Diazinon	ND	0.0050	"	**	**	**	H	n	
Disulfoton	ND	0.0050	"	**	**	**	H	n	
Demeton-o	ND	0.010	"	**	**	**	H	n	
Dimethoate	ND	0.0050	"	**	**	**	H	n	
Ronnel	ND	0.010	"	**	**	**	W	n	
Merphos	ND	0.010	"	11	***	**	W	n	
Chlorpyrifos	ND	0.0050	"	11	***	**	W	n	
Fenthion	ND	0.0050	"	11	17	**	n	n	
Trichloronate	ND	0.0050	"	11	17	**	n	n	
Methyl parathion	ND	0.0050	"	**	**	**	W	n	
Malathion	ND	0.010	"	11	**	**	H.	n	
Tokuthion (Prothiofos)	ND	0.0050	"	11	**	**	H.	n	
Parathion	ND	0.0050	"	**	**	**	H	n	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	**	**	**	H.	n	
Bolstar	ND	0.0050	"	**	**	**	H.	n	
Fensulfothion	ND	0.0050	"	**	**	**	H.	n	
EPN	ND	0.0050	"	**	**	**	H.	n	
Azinphos methyl	ND	0.010	"	"	**	**	11	n	
Coumaphos	ND	0.0050	"	**	**	**	II	n	
Surrogate: Tributylphosphate		114 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 10 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC7-2 T193739-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	n .	"	"	"	"	"	
Demeton-s	ND	0.010	"	"	"	**	"	"	
Ethoprophos	ND	0.0050	"	"	"	**	11	"	
Phorate	ND	0.010	n	"	"	**	"	"	
Naled	ND	0.0050	n	"	"	**	"	"	
Sulfotep	ND	0.010	n	"	"	**	"	"	
Diazinon	ND	0.0050	n	"	"	**	"	"	
Disulfoton	ND	0.0050	n	"	"	**	"	"	
Demeton-o	ND	0.010	n	"	"	**	"	"	
Dimethoate	ND	0.0050	"	"	"	**	"	"	
Ronnel	ND	0.010	"	"	"	**	"	"	
Merphos	ND	0.010	"	"	"	**	"	"	
Chlorpyrifos	ND	0.0050	"	"	"	**	n .	"	
Fenthion	ND	0.0050	"	"	"	**	n .	"	
Trichloronate	ND	0.0050	"	"	"	**	"	"	
Methyl parathion	ND	0.0050	"	"	"	**	11	"	
Malathion	ND	0.010	u	"	"	**	n .	"	
Tokuthion (Prothiofos)	ND	0.0050	u	"	"	**	III	"	
Parathion	ND	0.0050	u	"	"	**	III	"	
Stirophos (Tetrachlorvinphos)	ND	0.0050	u	"	"	**	n .	"	
Bolstar	ND	0.0050	"	"	"	**	"	"	
Fensulfothion	ND	0.0050	"	"	**	**	H .	· ·	
EPN	ND	0.0050	"	"	"	**	"	"	
Azinphos methyl	ND	0.010	"	"	**	n	II .	TI .	
Coumaphos	ND	0.0050	"	"	**	**	"	"	
Surrogate: Tributylphosphate		108 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 11 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC8-2 T193739-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	n .	"	"	"	"	"	
Demeton-s	ND	0.010	n .	"	"	"	"	"	
Ethoprophos	ND	0.0050	"	"	"	**	11	"	
Phorate	ND	0.010	n	"	"	**	"	"	
Naled	ND	0.0050	n	"	"	**	"	"	
Sulfotep	ND	0.010	n	"	"	**	"	"	
Diazinon	ND	0.0050	n	"	"	**	"	"	
Disulfoton	ND	0.0050	n	"	"	**	"	"	
Demeton-o	ND	0.010	n	"	"	**	"	"	
Dimethoate	ND	0.0050	"	"	"	**	"	"	
Ronnel	ND	0.010	"	"	"	**	"	"	
Merphos	ND	0.010	"	"	"	**	"	"	
Chlorpyrifos	ND	0.0050	"	"	"	**	n .	"	
Fenthion	ND	0.0050	"	"	"	**	n .	"	
Trichloronate	ND	0.0050	"	"	"	**	n .	"	
Methyl parathion	ND	0.0050	"	"	"	**	11	"	
Malathion	ND	0.010	u	"	"	**	III	"	
Tokuthion (Prothiofos)	ND	0.0050	u	"	"	**	III	"	
Parathion	ND	0.0050	u	"	"	**	III	"	
Stirophos (Tetrachlorvinphos)	ND	0.0050	u	"	"	**	n .	"	
Bolstar	ND	0.0050	"	"	"	**	"	"	
Fensulfothion	ND	0.0050	"	"	"	**	"	"	
EPN	ND	0.0050	"	"	"	**	"	"	
Azinphos methyl	ND	0.010	"	"	**	n	II .	TI .	
Coumaphos	ND	0.0050	"	"	**	**	III	TT .	
Surrogate: Tributylphosphate		110 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 12 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC9-2 T193739-09 (Soil)

Mevinphos ND 0.050 "	porting Limit	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Dichlorvos ND 0.050 mg/kg 10 9103026 10/30/19 10/31/19 Mevinphos ND 0.050 "	Star La		SunStar Lab	boratori	es, Inc.					
Mevinphos ND 0.050 "		Method 8141A								
No	0.050	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Ethoprophos ND 0.050 """""""""""""""""""""""""""""""	0.050	ND	0.050	**	"	n	"	H	Ħ	R-07
No	0.10	ND	0.10	**	"	n	17	H	"	R-07
Naled ND 0.050 "	0.050	ND	0.050	**	n	n	17	H	"	R-07
No	0.10	ND	0.10	**	n	n	**	H	"	R-07
Diazinon ND 0.050 " " " " " " " " " " " " " " " " " "	0.050	ND	0.050	**	"	n	**	11	Ü	R-07
Disulfoton ND 0.050 "	0.10	ND	0.10	**	"	n n	**	H	"	R-07
Demeton-o ND 0.10 " <	0.050	ND	0.050	**	"	"	**	H	"	R-07
Dimethoate ND 0.050 " " " " " " " " " " " " " " " " " "	0.050	ND	0.050	**	"	"	**	н	"	R-07
Boundaries ND 0.00 "	0.10	ND	0.10	**	"	"	**	н	"	R-07
Merphos ND 0.10 " " " " " " " " " " " " " " " " " " "	0.050	ND	0.050	**	"	"	"	н	"	R-07
Chlorpyrifos	0.10	ND	0.10	**	"	TT TT	"	н	"	R-07
Fenthion ND 0.050 " <	0.10	ND	0.10	**	"	n	"	н	"	R-07
Trichloronate ND 0.050 " " " " " " " " " " " Methyl parathion ND 0.050 " " " " " " " " " " " " " " " " " "	0.050	ND	0.050	**	"	n	"	н	"	R-07
Methyl parathion ND 0.050 "	0.050	ND	0.050	**	"	"	"	n	"	R-07
Malathion ND 0.10 " <	0.050	ND	0.050	**	"	"	"	n	"	R-07
Tokuthion (Prothiofos) ND 0.050 "<	0.050	ND	0.050	**	"	"	"	n n	"	R-07
Parathion ND 0.050 " " " " " " " " " Stirophos (Tetrachlorvinphos) ND 0.050 " " " " " " " " " " " " " " " " " "	0.10	ND	0.10	**	"	"	"	н	"	R-07
Stirophos (Tetrachlorvinphos) ND 0.050 "	0.050	ND	0.050	**	"	"	"	H	"	R-07
ND 0.050 "	0.050	ND	0.050	**	"	"	"	H	"	R-07
Fensulfothion ND 0.050 "	0.050	ND	0.050	**	"	"	"	H	"	R-07
EPN ND 0.050 "<	0.050	ND	0.050	**	"	**	"	n .	"	R-07
Azinphos methyl ND 0.10 "	0.050	ND	0.050	**	"	**	"	n	n	R-07
Coumaphos ND 0.050 " " " " "	0.050	ND	0.050	**	"	**	"	n	n	R-07
Countaphos No 0.050	0.10	ND	0.10	**	"	**	"	H	n	R-07
	0.050	ND	0.050	**	"	"	"	H	n	R-07
Surrogate: Tributylphosphate 117 % 40-125 " " "	117%		117 %	40-1	125	"	11	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 13 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC10-2 T193739-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Mevinphos	ND	0.050	"	11	"	"	н	"	R-07
Demeton-s	ND	0.10	"	11	"	**	н	"	R-07
Ethoprophos	ND	0.050	"	"	"	"	"	"	R-07
Phorate	ND	0.10	"	"	"	"	n .	**	R-07
Naled	ND	0.050	"	"	"	"	n .	**	R-07
Sulfotep	ND	0.10	"	"	"	**	H	**	R-07
Diazinon	ND	0.050	"	"	**	**	H	**	R-07
Disulfoton	ND	0.050	"	"	**	**	H	**	R-07
Demeton-o	ND	0.10	"	"	**	**	H.	**	R-07
Dimethoate	ND	0.050	"	n	**	**	II	TT .	R-07
Ronnel	ND	0.10	"	"	"	**	и	17	R-07
Merphos	ND	0.10	"	"	17	11	и	TT .	R-07
Chlorpyrifos	ND	0.050	"	11	"	"	н	77	R-07
Fenthion	ND	0.050	"	"	17	**	H	17	R-07
Trichloronate	ND	0.050	"	11	"	"	н	"	R-07
Methyl parathion	ND	0.050	"	11	"	"	н	**	R-07
Malathion	ND	0.10	"	11	"	**	н	**	R-07
Tokuthion (Prothiofos)	ND	0.050	"	11	"	**	н	**	R-07
Parathion	ND	0.050	"	"	"	"	"	"	R-07
Stirophos (Tetrachlorvinphos)	ND	0.050	"	"	"	"	"	**	R-07
Bolstar	ND	0.050	"	"	"	"	"	**	R-07
Fensulfothion	ND	0.050	"	"	"	"	"	"	R-07
EPN	ND	0.050	"	"	"	**	н	"	R-07
Azinphos methyl	ND	0.10	"	"	**	**	H	n	R-07
Coumaphos	ND	0.050	"	"	"	"	n	"	R-07
Surrogate: Tributylphosphate		121 %	40	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 14 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC11-2 T193739-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SunStar Laboratories, Inc.									
Organophosphorus Pesticides by EPA	Method 8141A								
Dichlorvos	ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
Mevinphos	ND	0.0050	**	"	**	**	11	"	
Demeton-s	ND	0.010	**	"	**	**	11	"	
Ethoprophos	ND	0.0050	**	"	**	**	11	Ħ	
Phorate	ND	0.010	**	"	**	**	11	"	
Naled	ND	0.0050	11	"	**	**	11	**	
Sulfotep	ND	0.010	11	"	**	**	11	**	
Diazinon	ND	0.0050	11	"	**	**	**	**	
Disulfoton	ND	0.0050	"	**	**	**	H .	"	
Demeton-o	ND	0.010	"	**	**	**	H.	"	
Dimethoate	ND	0.0050	"	**	**	**	W	"	
Ronnel	ND	0.010	"	**	**	**	W	n	
Merphos	ND	0.010	"	11	**	**	W	n	
Chlorpyrifos	ND	0.0050	"	"	**	**	II.	"	
Fenthion	ND	0.0050	"	11	**	**	n	n	
Trichloronate	ND	0.0050	"	11	**	**	n	n	
Methyl parathion	ND	0.0050	"	**	**	**	W	n	
Malathion	ND	0.010	"	11	**	**	H.	n	
Tokuthion (Prothiofos)	ND	0.0050	"	11	**	**	H.	n	
Parathion	ND	0.0050	"	**	**	**	H	n	
Stirophos (Tetrachlorvinphos)	ND	0.0050	"	**	**	**	H.	n	
Bolstar	ND	0.0050	"	**	**	**	H.	n	
Fensulfothion	ND	0.0050	"	**	**	**	H.	n	
EPN	ND	0.0050	**	**	**	n	H	n	
Azinphos methyl	ND	0.010	"	"	**	**	11	n	
Coumaphos	ND	0.0050	"	**	**	**	II	n	
Surrogate: Tributylphosphate		103 %	40-	125	11	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 15 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC12-2 T193739-12 (Soil)

Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
rganophosphorus Pesticides by EPA Method 8141A								
ichlorvos ND	0.0050	mg/kg	1	9103026	10/30/19	11/01/19	8141a	
levinphos ND	0.0050	"	"	**	u	"	**	
emeton-s ND	0.010	"	**	**	u	"	"	
thoprophos	0.0050	"	**	**	u	"	**	
norate ND	0.010	"	**	**	u	"	"	
aled ND	0.0050	"	**	**	**	"	"	
ulfotep ND	0.010	"	**	**	**	n	Ħ	
iazinon ND	0.0050	"	**	**	**	H .	Ħ	
isulfoton ND	0.0050	"	**	**	**	H .	**	
emeton-o ND	0.010	"	**	**	**	H .	Ħ	
imethoate ND	0.0050	"	"	**	Ħ	II	u	
onnel ND	0.010	"	**	**	17	IT	TT .	
lerphos ND	0.010	"	"	**	**	II	TT .	
hlorpyrifos ND	0.0050	"	"	**	**	H .	11	
enthion ND	0.0050	"	"	**	**	H .	11	
richloronate ND	0.0050	"	"	**	**	H .	ti .	
ethyl parathion ND	0.0050	"	"	**	Ħ	11	n	
alathion ND	0.010	"	"	**	"	"	n	
okuthion (Prothiofos) ND	0.0050	"	"	**	**	II	u	
arathion ND	0.0050	"	"	**	Ħ	II	u	
rirophos (Tetrachlorvinphos) ND	0.0050	"	"	**	Ħ	11	u	
olstar ND	0.0050	"	"	**	Ħ	11	u	
ensulfothion ND	0.0050	"	"	**	Ħ	"	n	
PN ND	0.0050	"	"	**	**	"	u u	
zinphos methyl ND	0.010	"	**	**	**	"	"	
oumaphos ND	0.0050	"	**	**	**	**	"	
rrogate: Tributylphosphate	115 %	40-	125	rr .	"	"	II	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 16 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC13-2 T193739-13 (Soil)

erganophosphorus Pesticides by EPA Method 8141A ichlorvos ND devinphos ND	0.0050 0.0050	aboratoriong/kg	es, Inc.					
ichlorvos ND		mg/kg						
		mg/kg						
levinphos ND	0.0050		1	9103026	10/30/19	11/01/19	8141a	
1		**	"	"	"	"	n	
emeton-s ND	0.010	"	"	"	"	n .	u	
thoprophos	0.0050	**	"	"	"	"	n	
horate ND	0.010	"	"	"	"	"	u	
aled ND	0.0050	"	**	**	n	"	**	
ulfotep ND	0.010	**	**	n	n	"	Ħ	
iazinon ND	0.0050	**	**	n	n	"	Ħ	
isulfoton ND	0.0050	**	**	n.	n	"	Ħ	
emeton-o ND	0.010	**	**	"	n	"	Ħ	
imethoate ND	0.0050	**	"	T .	T .	II .	Ħ	
onnel ND	0.010	**	"	TT .	n	II .	Ħ	
Ierphos ND	0.010	**	"	ıı	ıı	n .	Ħ	
hlorpyrifos ND	0.0050	**	"	17	ıı	n	11	
enthion ND	0.0050	**	"	17	ıı	n	Ħ	
richloronate ND	0.0050	**	"	ii.	Ħ	n .	Ħ	
lethyl parathion ND	0.0050	**	"	n	n	II .	Ħ	
Talathion ND	0.010	"	"	"	n	II .	ti .	
okuthion (Prothiofos) ND	0.0050	"	"	"	"	"	ti .	
arathion ND	0.0050	**	"	n	n	"	Ħ	
tirophos (Tetrachlorvinphos) ND	0.0050	**	"	"	"	"	ti .	
olstar ND	0.0050	**	"	"	"	"	**	
ensulfothion ND	0.0050	**	"	"	"	"	**	
PN ND	0.0050	**	"	"	"	"	**	
zinphos methyl ND	0.010	**	**	"	"	"	TI .	
oumaphos ND	0.0050	"	**	**	n.	"	**	
urrogate: Tributylphosphate	97.2 %	40-1	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 17 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC14-2 T193739-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA Met	thod 8141A								
Dichlorvos	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Mevinphos	ND	0.050	"	"	**	**	"	**	R-07
Demeton-s	ND	0.10	"	"	**	**	"	**	R-07
Ethoprophos	ND	0.050	"	"	**	**	"	**	R-07
Phorate	ND	0.10	"	"	**	**	"	**	R-07
Naled	ND	0.050	"	"	**	**	"	**	R-07
Sulfotep	ND	0.10	**	**	**	**	**	**	R-07
Diazinon	ND	0.050	**	**	**	**	"	**	R-07
Disulfoton	ND	0.050	"	**	**	**	"	**	R-07
Demeton-o	ND	0.10	**	**	**	**	"	**	R-07
Dimethoate	ND	0.050	**	**	**	**	II	**	R-07
Ronnel	ND	0.10	"	**	**	**	"	17	R-07
Merphos	ND	0.10	"	"	**	***	"	17	R-07
Chlorpyrifos	ND	0.050	**	"	**	11	II .	11	R-07
Fenthion	ND	0.050	**	"	**	11	II .	11	R-07
Trichloronate	ND	0.050	**	"	**	Ħ	II .	11	R-07
Methyl parathion	ND	0.050	**	"	**	Ħ	II .	**	R-07
Malathion	ND	0.10	"	"	**	Ħ	II .	**	R-07
Tokuthion (Prothiofos)	ND	0.050	"	"	**	Ħ	H .	**	R-07
Parathion	ND	0.050	"	"	**	Ħ	H .	**	R-07
Stirophos (Tetrachlorvinphos)	ND	0.050	**	"	**	Ħ	11	**	R-07
Bolstar	ND	0.050	**	"	**	Ħ	11	**	R-07
Fensulfothion	ND	0.050	11	"	**	**	"	**	R-07
EPN	ND	0.050	11	"	**	**	"	**	R-07
Azinphos methyl	ND	0.10	11	"	**	**	"	**	R-07
Coumaphos	ND	0.050	11	"	**	**	"	"	R-07
Surrogate: Tributylphosphate		107 %	40-	125	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 18 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

BC15-2 T193739-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organophosphorus Pesticides by EPA M	ethod 8141A								
Dichlorvos	ND	0.050	mg/kg	10	9103026	10/30/19	10/31/19	8141a	R-07
Mevinphos	ND	0.050	**	"	**	**	11	n	R-07
Demeton-s	ND	0.10	**	"	**	**	"	**	R-07
Ethoprophos	ND	0.050	**	"	**	**	"	**	R-07
Phorate	ND	0.10	**	"	**	**	"	**	R-07
Naled	ND	0.050	**	"	**	**	"	**	R-07
Sulfotep	ND	0.10	**	**	**	**	"	**	R-07
Diazinon	ND	0.050	**	**	**	**	"	**	R-07
Disulfoton	ND	0.050	**	**	**	**	"	**	R-07
Demeton-o	ND	0.10	**	**	**	**	"	**	R-07
Dimethoate	ND	0.050	**	**	**	**	"	**	R-07
Ronnel	ND	0.10	**	**	"	**	II .	11	R-07
Merphos	ND	0.10	**	11	11	11	II	11	R-07
Chlorpyrifos	ND	0.050	**	**	**	**	II .	11	R-07
Fenthion	ND	0.050	**	**	**	**	II .	11	R-07
Trichloronate	ND	0.050	**	"	**	**	II .	11	R-07
Methyl parathion	ND	0.050	**	"	**	**	II .	**	R-07
Malathion	ND	0.10	**	"	**	**	"	**	R-07
Tokuthion (Prothiofos)	ND	0.050	**	"	**	**	11	**	R-07
Parathion	ND	0.050	**	"	**	**	11	**	R-07
Stirophos (Tetrachlorvinphos)	ND	0.050	**	"	**	**	"	**	R-07
Bolstar	ND	0.050	**	"	**	**	"	**	R-07
Fensulfothion	ND	0.050	**	"	**	**	"	"	R-07
EPN	ND	0.050	**	**	**	**	"	"	R-07
Azinphos methyl	ND	0.10	**	**	**	**	"	"	R-07
Coumaphos	ND	0.050	**	**	**	**	"	"	R-07
Surrogate: Tributylphosphate		132 %	40-	125	n	"	"	"	S-11

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 19 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number: [none]Reported:Santa Fe Springs CA, 90670Project Manager: Colby Wakeman11/01/19 12:05

Organophosphorus Pesticides by EPA Method 8141A - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 9103026 - EPA 3550 ECD/GCMS	
Blank (9103026-BLK1)	Prepared: 10/30/19

Blank (9103026-BLK1)				Prepared: 10/30/19 Analyzed: 10/31/19
Dichlorvos	ND	0.0050	mg/kg	
Mevinphos	ND	0.0050	11	
Demeton-s	ND	0.010	"	
Ethoprophos	ND	0.0050	11	
Phorate	ND	0.010	**	
Naled	ND	0.0050	**	
Sulfotep	ND	0.010	11	
Diazinon	ND	0.0050	11	
Disulfoton	ND	0.0050	11	
Demeton-o	ND	0.010	"	
Dimethoate	ND	0.0050	"	
Ronnel	ND	0.010	**	
Merphos	ND	0.010	**	
Chlorpyrifos	ND	0.0050	**	
Fenthion	ND	0.0050	"	
Trichloronate	ND	0.0050	"	
Methyl parathion	ND	0.0050	"	
Malathion	ND	0.010	"	
Tokuthion (Prothiofos)	ND	0.0050	11	
Parathion	ND	0.0050	**	
Stirophos (Tetrachlorvinphos)	ND	0.0050	**	
Bolstar	ND	0.0050	"	
Fensulfothion	ND	0.0050	"	
EPN	ND	0.0050	11	
Azinphos methyl	ND	0.010	"	
Coumaphos	ND	0.0050	11	
Surrogate: Tributylphosphate	0.0401		"	0.0399 100 40-125

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 20 of 22

Jones Environmental Project: BCHD

11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

Organophosphorus Pesticides by EPA Method 8141A - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 9103026 - EPA 3550 ECD/GCMS										
LCS (9103026-BS1)				Prepared: 1	.0/30/19 A	nalyzed: 10	/31/19			
Diazinon	0.0444	0.0050	mg/kg	0.0398		112	60-130			
Chlorpyrifos	0.0339	0.0050	11	0.0398		85.0	60-130			
Methyl parathion	0.0416	0.0050	11	0.0398		104	60-130			
Stirophos (Tetrachlorvinphos)	0.0546	0.0050	"	0.0398		137	60-130			QM-11
Surrogate: Tributylphosphate	0.0412		"	0.0398		103	40-125			
LCS Dup (9103026-BSD1)				Prepared: 1	0/30/19 A	nalyzed: 10	/31/19			
Diazinon	0.0475	0.0050	mg/kg	0.0397		120	60-130	6.79	20	
Chlorpyrifos	0.0381	0.0050	11	0.0397		96.0	60-130	11.7	20	
Methyl parathion	0.0450	0.0050	11	0.0397		113	60-130	7.75	20	
Stirophos (Tetrachlorvinphos)	0.0529	0.0050	11	0.0397		133	60-130	3.14	20	QM-11
Surrogate: Tributylphosphate	0.0726		"	0.0397		183	40-125			S-09

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 21 of 22

Jones EnvironmentalProject:BCHD11007 Forest PlaceProject Number:[none]Reported:Santa Fe Springs CA, 90670Project Manager:Colby Wakeman11/01/19 12:05

Notes and Definitions

S-11	The surrogate recovery was above acceptance criteria in the sample. The sample is ND for the analytes of interest. The surrogate recovery was within acceptance criteria in the method blank and LCS.
S-09	The surrogate recovery in the LCS, MS and/or MSD was bias high. The surrogate recovery in associated samples was within acceptance criteria and the samples were ND. No negative impact on data is expected.
R-07	Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s) and/or matrix affect.
QM-11	The LCS and LCSD were above acceptance criteria. The method blank and sample were ND for the analyte in question. The CCV was within acceptance criteria. There was insufficient sample for reextraction. No negative impact on data is expected.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 22 of 22

11007 Forest Pl.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685
www.jonesenv.com

Chain-of-Custody Record

	14:27	10-25-19		N N	SAM STAR	(4:4)	61-5-2-0)		on star
provided herein is correct and accurate.	Time	Date	l	1	Company	Time	Date:		ompany
constitutes acknowledgement that the above analyses have been renested and the information		Printed Namé	M.g.	oratory (Signatı	Received By Laboratory (Signate		CAVIA	_ 1	conduction of the conduction o
Client signature on this Chain of Custody form	5:30	D-25-19		anster	Supplied	18:30	lo-25-19		Direct Constinuished By (Singature)
10 Total Number of Containers	France	Tray's			Company	Time	Date (d)		ompany D.W.
丄	2	Printed Name	-	nature)	Received By (Signature)	ō	Printed Nam		elinquished By (Signature)
			×	S		10	08:24	10/24/2019	3C10-2
	·		×	S		09	07:30	10/24/2019	3C9-2
			×	S		80	13:20	10/23/2019	3C8-2
			×	S		07	12:45	10/23/2019	3C7-2
			×	S		90	11:45	10/23/2019	3C6-2
			×	S		.05	10:55	10/23/2019	3C5-2
			×	S		40	10:10	10/23/2019	BC4-2
			×	S		03	09:30	10/23/2019	BC3-2
			×	S		02	08:45	10/23/2019	BC2-2
1 57-14526			×	S		0/	07:30	10/23/2019	BC1-2
Number Notes & Special Instructions			Soil (S), SI EPA 8141	Sample Container Sample	Preservative	Laboratory Sample ID	Sample Collection Time	Date	Sample ID
of Co			udge (Matı	O - Other (See Notes)	0 - Ot			
ontainer V				rix:	MeOH - Methanol HCI - Hydrochloric Acid HNO3 - Nitric Acid	MeOH HCI-I HNO3	-	Sampler Spencer	Report To Colby
S			ous (A)		P - Plastic SOBI - Sodium Bisuffate	P - Plastic SOBI - Soo			714-449-9937
Sealed - yes - no			, Free Pro		BS - Brass Sleeve G - Glass AB - Amber Bottle	BS - Brass G - Glass AB - Amb			reports@jonesenv.com
Sample Condition as Recieved:			duct (FF	we	AS - Acetate Sleeve SS - Stainless Steel Sleeve	AS - 4 SS - S			Redondo Beach, CA
O.	equested	Analysis Requested	<u>)</u>	<u>servative</u>	Sample Container / Preservative Abbreviations	Sam			520 N. Prospect Ave
Page	*Global ID	Hours	□ Rush 72 Hours □ Normal		Client Project # 18-41-296-02	18-4:			BCHD BCHD
oolies Floject#	EDF* - 10% Surcharge	Hours	Rush 24 Hours		10/23/2019	10/2:			Converse Consultants
LAB USE ONLY	Report Options	Turn Around Requested:	urn Aro			Date			Client
					•	•	****	(

Client

11007 Forest Pl. Santa Fe Springs, CA 90670 Fax (714) 449-9685 (714) 449-9937

Chain-of-Custody Record

BC13-2 Report To Colby telinquished By (Signature) Relinquished By (Signature) BC15-2 BC14-2 BC12-2 BC11-2 520 N. Prospect Ave 714-449-9937 reports@jonesenv.com Redondo Beach, CA BCHD Project Name Converse Consultants Project Address レショ いりく Sample ID 10/24/2019 Spencer Sampler 10/24/2019 10/24/2019 10/24/2019 10/24/2019 Date Collection CW15 09:34 11:50 11:15 10:40 10:10 Sample Time Printed Name 10-25-19 Printed Name Vunce Laboratory Sample ID تر S 7 w Jaken 1330 Client Project # 10/23/2019 18-41-296-02 O - Other (See Notes) P - Plastic AS - Acetate Sleeve SS - Stainless Steel Sleeve BS - Brass Sleeve HNO3 - Nitric Acid HCI - Hydrochloric Acid MeOH - Methanol SOBI - Sodium Bisulfate AB - Amber Bottle G - Glass Sample Container / Preservative

Abbreviations www.jonesenv.com Received By Laboratory (Signaturs Received By Preservative Container Sample Matrix: S S S S Turn Around Requested: ഗ □ Rush 72 Hours
□ Normal □ Immediate Attention
□ Rush 24 Hours Rush 48 Hours Soil (S), Sludge (SL), Aqueous (A), Free Product (FP) × \times × Swy NY Date Printed Name Printed Name 6-24-0 Analysis Requested RWIS Graher EDF* - 10% Surcharge_ *Global ID Report Options analyses have been reqested, and the information **Number of Containers** Client signature on this Chain of Custody form constitutes acknowledgement that the above Total Number of Containers Chilled □ yes □ no Page Sealed uges no Sample Condition as Recieved: LAB USE ONLY Notes & Special Instructions Jones Project # 읔

in Stew

10-25-19

4:27

Company

SWN STAR

10 25/19

Time (4:27

provided herein is correct and accurate.

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	1 193739		
Client Name:	Jones	Project:	BCHD
Delivered by:	Client SunStar Cour	er 🗌 GSO 📋 l	FedEx Other
If Courier, Received by:	Travis	Date/Time Courie Received:	$\frac{10-25-19}{13:30}$
Lab Received by:	Sunny	Date/Time Lab Received:	10-25-19 14:27
Total number of coolers re	eceived: / Thermometer	ID: 50-1	Calibration due : <u>6/27/20</u>
Temperature: Cooler #1	°C +/- the CF (+ 1.2°C	c) = °C	C corrected temperature
Temperature: Cooler #2	°C +/- the CF (+ 1.2°C	c) = °C	C corrected temperature
Temperature: Cooler #3	°C +/- the CF (+ 1.2°C	c) = °(corrected temperature
Temperature criteria = 5 (no frozen containers)	≤6°C Within	criteria?	Yes No
If NO:			
Samples received	on ice?]No → omplete Non-Conformance Sheet
If on ice, samples collected?	received same day	→ Accentable	omplete Non-Conformance Sheet omplete Non-Conformance Sheet
Custody seals intact on co	ooler/sample		Yes No* N/A
Sample containers intact			Yes No*
Sample labels match Chai	in of Custody IDs	•	Yes □No*
Total number of container	rs received match COC		Yes No*
Proper containers received	d for analyses requested on COC		Yes \[\]No*
Proper preservative indica	ated on COC/containers for analy	ses requested	Yes □No* ☑N/A
	ved in good condition with correctes preservatives and within metho		Yes No*
* Complete Non-Conforman	nce Receiving Sheet if checked	Cooler/Sample Review	- Initials and date: $\frac{1}{18}$ $0-25-19$
Comments:			

Printed: 10/28/2019 9:29:56AM

WORK ORDER

T193739

Client:Jones EnvironmentalProject Manager:Jeff LeeProject:BCHDProject Number:[none]

Report To:

Jones Environmental Colby Wakeman 11007 Forest Place

Santa Fe Springs, CA 90670

Date Due: 11/01/19 17:00 (5 day TAT)

Received By: Travis Berner Date Received: 10/25/19 14:27
Logged In By: Travis Berner Date Logged In: 10/25/19 17:20

Samples Received at: 4.3°C

Custody Seals No Received On Ice Yes

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confir No

Analysis	Due	TAT	Expires	Comments
T193739-01 BC1-2 [Soil]	Sampled 10/23/19 07:30) (GMT-08	:00) Pacific Time (us
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 07:30	
T193739-02 BC2-2 [Soil]	Sampled 10/23/19 08:45	5 (GMT-08	:00) Pacific Time (US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 08:45	
T193739-03 BC3-2 [Soil]	Sampled 10/23/19 09:30) (GMT-08	:00) Pacific Time (US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 09:30	
T193739-04 BC4-2 [Soil]	Sampled 10/23/19 10:10) (GMT-08	:00) Pacific Time (US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 10:10	
T193739-05 BC5-2 [Soil]	Sampled 10/23/19 10:55	5 (GMT-08	:00) Pacific Time (US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 10:55	
T193739-06 BC6-2 [Soil]	Sampled 10/23/19 11:45	5 (GMT-08	:00) Pacific Time (us
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 11:45	
T193739-07 BC7-2 [Soil]	Sampled 10/23/19 12:45	5 (GMT-08	:00) Pacific Time (US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 12:45	

(US &

8141 OP Pesticides

WORK ORDER

T193739

Client: Jones Environmental Project Manager: Jeff Lee

Project: BCHD Project Number: [none]

11/01/19 15:00

Analysis	Due	TAT	Expires	Comments
T193739-08 BC8-2 [Soil] &	Sampled 10/23/19 13:2	0 (GMT-08	3:00) Pacific Time	(US
8141 OP Pesticides	11/01/19 15:00	5	11/06/19 13:20	
T193739-09 BC9-2 [Soil] &	Sampled 10/24/19 07:3	0 (GMT-08	3:00) Pacific Time	(US
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 07:30	
T193739-10 BC10-2 [Soil (US &] Sampled 10/24/19 08:	24 (GMT-0	98:00) Pacific Time	
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 08:24	
T193739-11 BC11-2 [Soil]	Sampled 10/24/19 09:3	34 (GMT-0	8:00) Pacific Time	
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 09:34	
T193739-12 BC12-2 [Soil (US &] Sampled 10/24/19 10:	10 (GMT-0	98:00) Pacific Time	•
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 10:10	
T193739-13 BC13-2 [Soil (US &] Sampled 10/24/19 10:	40 (GMT-0	98:00) Pacific Time	•
8141 OP Pesticides	11/01/19 15:00	5	11/07/19 10:40	
T193739-14 BC14-2 [Soil (US &	Sampled 10/24/19 11:	15 (GMT-0	8:00) Pacific Time	
`			11/07/19 11:15	

5

11/07/19 11:50

Reviewed By Date Page 2 of 2

December 31, 2019

Converse Consultants ATTN: Michael Van Fleet 717 S. Myrtle Ave. Monrovia, CA 91016-3500

LABORATORY TEST RESULTS

Project Reference: BCHD

Project Number: 18-41-296-02 Lab Number: K122301-01/06

Enclosed are results for sample(s) received 12/23/19 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

Preliminary results were e-mailed to Michael Van Fleet on 12/26/19.

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

K122301 Page 2 of 6 Preservation: H=HCL N=None / Container: B=Bag C=Can V=VOA 0=Other Rev. 03 - 5/7/09 DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy

Project No.: 16-41-296-62				しつとませい	トロローのロント	ここくいこ		
Project No.: 16-41-296-62	City of Industry, CA 91748	TUR	TURNAROUND TIME	D TIME	DELIVERABLES	S PAGE:	OF	
	Ph: 626-964-4032	Standard	П 84	48 hours 🕅	EDD	Condition upon receipt:	ipt:	
	Fx: 626-964-5832	Same Day	□	72 hours	EDF	Sealed	Sealed Yes	□ %
		24 hours	96	96 hours	LEVEL 3	Intact	Intact Yes	□ %
		Other:			LEVEL 4	Chilled		_ deg C
REPORTO: MICHARY LAN FLEET	13		BILLING		,	ANALYSIS REQUEST	ST	
COMPANY: CONVEDSE CONSULTANTS	KTY.	P.O. No.:						
Street: 717 5, MYRTUE ALE	E,	Bill to:						
City/State/Zip: MONECUIA CA 9	91016							
Phone & Fax: 626 950 -1267					ч			
MANANT	consultants com				15			
LAB USE ONLY SAMPLE ID	SAMPLE IDENTIFICATION	3J4MA2 3TAQ	SAMPLE BMIT	MATRIX CONTAINER PAYT	S1-01			
K122301-01 1510-129		1221	8:08	AIR C	7			
8-015, 20-1		12 21	71:0	-	X			
-03 CP-OFFICE		12/21	8:13		×			
-04 "BELLD AMBIEN	17.	12/21	8,25		4			
1-05 '5145F-1		12 21	8:3	7	4			
01-10 X15 AU-10		12/21	8:3	>	4			
AUTHORIZATION TO PERFORM WORK COMPANY		DATE/TIME	ŏ	COMMENTS				
RELINGUISHED BY JAZ+ HILF DATE/TIME IN 23/19 IN PRELINGUISHED BY 1/22/19 DATE/TIME IN TOTAL OF THE PRECINCAL OF THE PROPERTY OF THE P	11	DATESTIME 1/2 21/19 @ DATESTIME 1/23/19 DATESTIME DATESTIME	10.18					Page 2 of 6
DATE/TIME	NAOP.							
METHOD OF TRANSPORT (circle one): Walk-In FedEx	Ex UPS Courier ATLI Other	er						

Client:

Converse Consultants

Attn:

Michael Van Fleet

Project Name:

BCHD 18-41-296-02

Project No.: Date Received:

12/23/19

Matrix:

Air

Reporting Units: ug/m3

EPA Method TO15 SIM

Lab No.:	K1223	01-01	K1223	01-02	K1223	01-03	K1223	01-04
Client Sample I.D.;	510-	129	520-8		CP-Office		Ambient	
Date/Time Sampled:	12/21/19 8:08		12/21/19 8:16		12/21/19 8:23		12/21/1	9 8:25
Date/Time Analyzed:	12/26/1	9 3:41	12/25/1		12/25/19		12/25/19	
QC Batch No.:	191225	MS2A1	1912251	MS2A1	191225N	MS2A1	191225	A A A A A A A A A A A A A A A A A A A
Analyst Initials:	M	J	М	J	M	J	M	J
Dilution Factor:	1.	0	1.	0	1.0	0	1.	0
ANALYTE	Result ug/m3	RL ug/m3	Result ug/m3	RL ug/m3	Result ug/m3	RL ug/m3	Result ug/m3	RL ug/m3
Dichlorodifluoromethane (12)	2.1	0.049	2.1	0.049	2.1	0.049	2.0	0.049
Chloromethane	1.0	0.021	1.4	0.021	1.0	0.021	1.0	0.021
Vinyl Chloride	ND	0.013	ND	0.013	ND	0.013	ND	0.013
Chloroethane	0.031	0.026	0.18	0.026	0.19	0.026	0.040	0.026
Trichlorofluoromethane (11)	1.2	0.11	1.2	0.11	1.2	0.11	1.2	0.11
1,1,2-Cl 1,2,2-F ethane (113)	0.50	0.15	0.50	0.15	0.48	0.15	0.48	0.15
1,1-Dichloroethene	ND	0.020	ND	0.020	ND	0.020	ND	0.020
Methylene Chloride	0.56	0.17	0.69	0.17	0.58	0.17	0.72	0.17
t-1,2-Dichloroethene	ND	0.040	0.055	0.040	0.041	0.040	ND	0.040
1,1-Dichloroethane	ND	0.040	ND	0.040	ND	0.040	ND	0.040
c-1,2-Dichloroethene	ND	0.040	ND	0.040	ND	0.040	ND	0.040
Chloroform	0.42	0.049	2.6	0.049	0.15	0.049	0.18	0.049
1,1,1-Trichloroethane	ND	0.055	ND	0.055	ND	0.055	ND	0.055
Carbon Tetrachloride	0.46	0.063	0.47	0.063	0.44	0.063	0.45	0.063
Benzene	1.5	0.16	7.0	0.16	1.3	0.16	1.3	0.16
1,2-Dichloroethane	0.074	0.040	0.079	0.040	0.10	0.040	0.075	0.040
Trichloroethene	ND	0.054	0.070	0.054	0.056	0.054	ND	0.054
1,2-Dichloropropane	ND	0.092	ND	0.092	ND	0.092	ND	0.092
Bromodichloromethane	0.14	0.067	ND	0.067	ND	0.067	ND	0.067
Toluene	4.6	0.075	6.8	0.075	4.4	0.075	3.7	0.075
t-1,3-Dichloropropene	ND	0.045	ND	0.045	ND	0.045	ND	0.045
1,1,2-Trichloroethane	ND	0.055	ND	0.055	ND	0.055	ND	0.055
Tetrachloroethene	0.22	0.068	0.21	0.068	0.17	0.068	0.16	0.068
1,2-Dibromoethane	ND	0.15	ND	0.15	ND	0.15	ND	0.15
Ethylbenzene	0.72	0.087	1.4	0.087	0.69	0.087	0.59	0.087
p,&m-Xylene	2.5	0.087	4.0	0.087	2.5	0.087	2.0	0.087
o-Xylene	0.95	0.087	1.7	0.087	0.97	0.087	0.78	0.087
Styrene	0.33	0.085	1.3	0.085	0.30	0.085	0.31	0.085
1,1,2,2-Tetrachloroethane	ND	0.14	ND	0.14	ND	0.14	ND	0.14

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Date_12-31-19

cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. .

K122301 SIM xisx

Client:

Converse Consultants

Attn:

Michael Van Fleet

Project Name: Project No.:

BCHD 18-41-296-02

Date Received: Matrix:

12/23/19 Air

Reporting Units: ug/m3

EPA	Method	TO15	SIM
	TILCUIOU	1013	PATTAI

	Li	71 Michie	00 1015 8	71111			
Lab No.:	K1223	01-05	K1223	01-06			
Client Sample I.D.:	514-8	514-SF-1		H-10			
Date/Time Sampled:	12/21/19 8:31		12/21/19 8:34				
Date/Time Analyzed:	12/25/19	12/25/19 11:38					
QC Batch No.:	191225MS2A1 MJ		191225MS2A1 191225MS2A1			4	
Analyst Initials:			M	J			
Dilution Factor:	1.	0	1.	0			
ANALYTE	Result	RL	Result	RL			
DEMONSTRATE OF THE PROPERTY OF	ug/m3	ug/m3	ug/m3	ug/m3			
Dichlorodifluoromethane (12)	2.1	0.049	2.0	0.049			
Chloromethane	1.0	0.021	1.0	0.021			
Vinyl Chloride	ND	0.013	0.013	0.013			
Chloroethane	0.14	0.026	0.17	0.026			
Trichlorofluoromethane (11)	1.2	0.11	1.2	0.11			
1,1,2-Cl 1,2,2-F ethane (113)	0.50	0.15	0.48	0.15			
1,1-Dichloroethene	ND	0.020	ND	0.020			
Methylene Chloride	0.58	0.17	0.59	0.17			
t-1,2-Dichloroethene	ND	0.040	ND	0.040			
1,1-Dichloroethane	ND	0.040	ND	0.040			
c-1,2-Dichloroethene	ND	0.040	ND	0.040			
Chloroform	0.17	0.049	0.35	0.049			
1,1,1-Trichloroethane	ND	0.055	ND	0.055			
Carbon Tetrachloride	0.46	0.063	0.44	0.063			
Benzene	1.4	0.16	1.3	0.16			
1,2-Dichloroethane	0.077	0.040	0.078	0.040			
Trichloroethene	ND	0.054	ND	0.054			
1,2-Dichloropropane	ND	0.092	ND	0.092			
Bromodichloromethane	ND	0.067	ND	0.067	100		
Toluene	4.1	0.075	3.8	0.075			
-1,3-Dichloropropene	ND	0.045	ND	0.045			
1,1,2-Trichloroethane	ND	0.055	ND	0.055			
Tetrachloroethene	0.16	0.068	0.25	0.068			
1,2-Dibromoethane	ND	0.15	ND	0.15			
Ethylbenzene	0.65	0.087	0.61	0.087			
o,&m-Xylene	2.2	0.087	2.2	0.087			
o-Xylene	0.85	0.087	0.79	0.087			
Styrene	0.32	0.085	0.27	0.085			
1,1,2,2-Tetrachloroethane	ND	0.14	0.15	0.14			

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Date_17-31-19

cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

K122301 SIM xisx

Client: Converse Consultants Attn: Michael Van Fleet

Project Name: BCHD
Project No.: 18-41-296-02
Date Received: 12/23/19
Matrix: Air
Reporting Units: ug/m3

EPA Method TO15 SIM

	EF	A Metho	d TO1	5 SIM				
Lab No.:	Method	l Blank						
Client Sample I.D.:		-						
Date/Time Sampled:								
Date/Time Analyzed:	12/25/19 8:09							
QC Batch No.:	191225	MS2A1						
Analyst Initials:	M	J						
Dilution Factor:	1.	0						
ANALYTE	Result ug/m3	RL ug/m3						
Dichlorodifluoromethane (12)	ND	0.049						
Chloromethane	ND	0.021						
Vinyl Chloride	ND	0.013						
Chloroethane	ND	0.026						
Trichlorofluoromethane (11)	ND	0.11			1			
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.15		N I				
1,1-Dichloroethene	ND	0.020						
Methylene Chloride	ND	0.17						
t-1,2-Dichloroethene	ND	0.040						
1,1-Dichloroethane	ND	0.040			1			
c-1,2-Dichloroethene	ND	0.040						
Chloroform	ND	0.049						
1,1,1-Trichloroethane	ND	0.055						
Carbon Tetrachloride	ND	0.063						
Benzene	ND	0.16						
1,2-Dichloroethane	ND	0.040		-10				
Trichloroethene	ND	0.054		The same				
1,2-Dichloropropane	ND	0.092						
Bromodichloromethane	ND	0.067					1	
Toluene	ND	0.075						
t-1,3-Dichloropropene	ND	0.045		100				
1,1,2-Trichloroethane	ND	0.055						
Tetrachloroethene	ND	0.068						
1,2-Dibromoethane	ND	0.15			- 1			
Ethylbenzene	ND	0.087						
p,&m-Xylene	ND	0.087				74		
o-Xylene	ND	0.087			Y Lake			
Styrene	ND	0.085						
1,1,2,2-Tetrachloroethane	ND	0.14						

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Date_12-31-19

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

K122301 SIM xlsx

Date: 12-31-19

LCS/LCSD Recovery and RPD Summary Report

QC Batch #: 191225MS2A1

Matrix: Air

		EPA Me	thod TO)-15 SI	M						
Lab No:	Method Blank		L	CS	LC	CSD					
Date Analyzed:	12/25/19 8:09		12/25/	19 6:55	12/25/	19 7:32					
Data File ID:	25DEC004.D		25DEC002.D MJ 1.0		MJ MJ		L.				
Analyst Initials:	MJ										i i
Dilution Factor:	1.0							Limits			L.P.
ANALYTE	Result pptv	Spike Amount	Result pptv	% Rec	Result pptv	% Rec	RPD	Low %Rec	High %Rec	Max. RPD	Pass/ Fail
Vinyl Chloride	0.0	500	474	95	484	97	2.1	70	130	30	Pass
1,1-Dichloroethene	0.0	500	449	90	442	88	1.5	70	130	30	Pass
1,1,1-Trichloroethane	0.0	500	512	102	506	101	1.2	70	130	30	Pass
Benzene	28.2	500	467	93	466	93	0.3	70	130	30	Pass
Trichloroethene	0.0	500	430	86	431	86	0.3	70	130	30	Pass
Tetrachloroethene	0.0	500	509	102	496	99	2.5	70	130	30	Pass

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

1